
ar
X

iv
:1

60
4.

06
68

2v
4

 [
cs

.D
S]

 1
9

Ju
l 2

01
6

A sparse multidimensional FFT for real positive vectors∗

Letourneau, Pierre-David† Langston, M. Harper Meister, Benoit

Lethin, Richard ‡

July 20, 2016

Abstract

We present a sparse multidimensional FFT (sMFFT) randomized algorithm for positive real vec-
tors. The algorithm works in any fixed dimension, requires an (almost)-optimal number of samples
(O (R log (N))) and runs in O (R log (N)) complexity (where N is the total size of the vector in d dimen-
sions and R is the number of nonzeros) which we claim is optimal (up to first order). It is stable to noise,
exhibits an exponentially small probability of failure and is generalizable to general complex vectors.

∗This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA). The views,
opinions and/or findings expressed are those of the author and should not be interpreted as representing the official views or
policies of the Department of Defense or the U.S. Government. Patent Pending. (U.S. Patent Application No. 62/286,732)

†Corresponding author: letourneau@reservoir.com
‡Reservoir Labs, 632 Broadway Suite 803, New York, NY 10012

1

http://arxiv.org/abs/1604.06682v4

1 Introduction

The Fast Fourier Transform (FFT) algorithm reduces the computational cost of computing the Discrete
Fourier Transform (DFT) of a general complex N -vector from O(N2) to O(N log(N)). Since its popular-
ization in the 1960s [8], the FFT algorithm has played a crucial role in multiple areas including scientific
computing [9], signal processing [27] and computer science [10]. Such complexity has been shown to be
optimal in the general case [30]. In more restricted cases however, such as when the vector to be recovered
is sparse, it is possible to significantly improve on the latter.

Indeed, the past decade has seen the design and study of various algorithms that can compute the DFT of
sparse vectors using significantly less time and measurements than traditionally required [1–3,5,11–21,23,24,

28,32–34]. That is, if f is an N×1 vector corresponding to the DFT of an N×1 vector f̂ containing at most

R nonzero elements, it is possible to recover f̂ using significantly fewer samples than the traditional “Nyquist
rate” (≪ O(N)) and in computational complexity much lower than that of the FFT (≪ O(N log(N))).

These schemes are generally referred to as “sparse Fast Fourier Transform” (sFFT) algorithms, and they
fall within two main categories: deterministic [1, 2, 20, 21, 24] or randomized [2, 11–13, 15–19, 21, 28]. Of the
two, randomized algorithms have had the most success in practice thus far; although deterministic algorithms
do exhibit polylogarithmic complexity in log(N) and R (i.e., a computational cost ∼ CdetR loga(N)), the
algorithmic constant Cdet is so large that they are only competitive when N is impractically large or when
the sparsity satisfies stringent conditions. On the other hand, the algorithmic constant of randomized sparse
FFTs, Crand, is in general much smaller. This constant, however, depends on a parameter not present in a
deterministic context: the probability of failure p in recovering the actual solution; i.e., Crand ∼ Crand(p).
Sparse FFT algorithms can further be split into a few more categories: 1D versus multidimensional (d), and
exact versus noisy measurements. In particular, this paper is interested solely in cases that are stable to
noise as encountered in most applications.

Table 1 summarizes the properties of the most recent sparse FFT algorithms according to the most
important characteristics. Note that all scalings are reported to first order, that we neglect any log(log(·))
(or slower) factor throughout the paper, and that the behavior of the algorithmic constant is only reported
when it is available.

Reference Time Samples N Randomization dimension (d) Comment

[19] O
(

R log2(N)
)

O (R log(N)) 2L
Random

C ∼ p−2 1D
accuracy ǫ, C ∼ ǫ−1

No implementation

[17] O
(

N log3(N)
)

O (R log(N)) 2L
Random

p ∼ 1

N
O

(

R
γ

)

Any

C ∼ dd

[11] O
(

R log2(N)
)

O (R log(N)) 2L Random 1D, 2D Average case.

[13] O(R poly(log(N))) O(R poly(log(N))) Most
Random

C ∼ log(p)
Any

C ∼ 2O(d) accuracy ǫ, C ∼ ǫ−1

[18] O(R logd+2(N) O(R log(N) 2L
Random

p ∼ 1
log2(N)

Any

C ∼ 2O(d2)

[33] O(R log(N)) O(R) 2L Deterministic 1D
a priori knowledge of
sparsity. Support lies

in cyclic interval.

[34] O(R log(N)) O(R) 2L Deterministic 1D
Real positive vector.

Support lies
in cyclic interval.

[31] O(R log4(N)) O(R log3(N)) Most
Random

p ∼ 1
#samples

2D
Theory for uniformly
random support only

[22] O(R logd+3(N)) O(R log(N)) 2L
Random

p ∼ 1
log(N)

Any

C ∼ 2O(d2) accuracy ǫ, C ∼ ǫ−1

This paper O (R log (N)) O (R log (N)) Most
Random

C ∼ log(p)
Any

C ∼ O(1)
accuracy ǫ, C ∼ log(ǫ)
No implementation

Table 1: Computational characteristics of recent sparse FFT algorithms. C is the algorithmic constant, d is the ambient
dimension and p is the probability of failure.

In this paper, we introduce a sparse multidimensional FFT (sMFFT) with properties as shown in the
final row of Table 1. The sMFFT algorithm we present in this paper has the following properties:

• O
(

R
√

log(R) log (N)
)

samples and O
(

R log
3
2 (R) log (N)

)

computational complexity (Section 3).

2

• Works in any dimension d with algorithmic constant independent of dimension, i.e., dependence of the
form log(N) ∼ log(Md) = d log(M) only (Section 4).

• Exponentially small probability of failure and most desirable behavior among all modern randomized
sparse FFTs (CsMFFT ∼ log(p), Section 3).

• Stable to noise (Section 3.3).

• Works for any positive integer N (Section 3).

• Works for positive real vectors only1.

In this sense, our sMFFT algorithmmatches the optimal sampling complexity [15] (within a log(log(N))−1

factor), and the best time complexity achieved so far [33, 34], which we conjecture is in fact optimal.
Conjecture. Consider the family Fd(R,M) of a sparse d-dimensional signal possessing R nonzero elements

distributed arbitrarily within a a regular lattice possessing M points per dimensions (N = Md points
total). Then, the sampling and computational complexity for recovering each element of Fd(R,M) from the
knowledge of noisy Fourier samples is bounded below byO(R log(Md)) andO(R log(R) log(Md)) respectively.

Rationale. Sampling complexity has already been treated [15] and the bound is known to be optimal.
Now, for signal of size R, one must use the FFT which has a provable lower bound of O(R log(R)) [30]. Since
sparse FFTs are a generalization, one cannot expect to achieve a better complexity. In addition, it is reason-
able to expect that any reconstruction cost will exhibit some dependency on Nd; i.e., ∼ O(R log(R) f(Nd)),
and f(Nd) = log(Nd) is a very weak (and achievable) dependence. In this sense, it is reasonable to claim
that O(R log(R) log(Nd)) should be optimal.

In this sense, our algorithm possesses optimal sampling, and optimal computational complexity within a
factor

√

log(R). We believe, however, that this factor is an artifact of the theory (see Remark 1, Appendix
A.1), and that the parameters can be chosen such that the sampling and computational complexity are
O(R log(N)) and O(R log(R) log(N)), respectively. Also note that the algorithms introduced in [33,34] also
reach this bound. However, both algorithms were designed solely for the 1D case, requiring the support
of the sparse vector be contained in some cyclic interval of size O(R), an hypothesis that is extremely
restrictive. In opposition, our sMFFT algorithm presented here makes no assumption on the support of the
sparse vector other than being sparse. In addition, our algorithm is the first multidimensional version of
a sparse FFT which exhibit such scaling per regards to dimension. Indeed, most previous endeavors were
targeted at the 1D sparse FFT, whereas the only currently-existing multidimensional versions [13,17,18,22]
have a cost that scales at least exponentially with dimension. As for guarantees of recovering the correct
solution (with probability ≥ 1− p), it is seen from Table 1 that the dependence of the algorithmic constant
on the probability of failure is often quite unfavorable compared to that of our scheme (C ∼ log(p)). Finally,
our sMFFT algorithm does currently share with [34] the characteristic of being designed for real positive
vectors only.2 However, in many applications this is a valid hypothesis (e.g., radar imaging [26], image
processing [25]).

This document is structured as follows: in Section 2, we introduce the notation and a quantitative
description of the problem. In Section 3, we describe the algorithm in the one-dimensional case. The case
of noisy data is discussed in Section 3.3. We describe how to go from one dimension to multiple dimensions
in Section 4. Finally, numerical results are provided in Section 5. All proofs can be found in Appendix A,
and a discussion of the generalization to complex vectors can be found in Appendix B.

2 Notation and description of the problem

In this section, we introduce the notation used throughout the remainder of the paper. Unless otherwise
stated, the (1D) function f(x) will be assumed to take the form,

f(x) =
N−1
∑

j=0

e−2πi x j f̂j , (1)

1General complex vectors are treated in a sister paper: “A sparse multidimensional fast Fourier transform for general

complex vectors.” The work presented here is a precursor to the latter, or a faster alternative when the positivity hypotheses
are met. See also Appendix B.

2ibid.

3

for some finite 0 < N ∈ N, which represents the total number of unknowns. Furthermore, it is assumed that
the vector f̂ has real and positive elements as well as sparsity level smaller than or equal to R < N . That

is, if we define the support of f̂ as: S :=
{

n ∈ {0, 1, ..., N − 1} : |f̂n| 6= 0
}

, then 0 ≤ #S ≤ R < N <∞, and

f̂j

{

> 0 if j ∈ S
= 0 else,

(2)

where # indicates the cardinality of a set. In particular, we are interested in the case where R ≪ N . We

shall denote by F the Fourier transform (and F∗ its inverse/adjoint); i.e., F
[

f̂(ξ)
]

(x) =
∫

Rd e
−2πi x·ξ f̂(ξ) dξ,

where d represents the ambient dimension. The size-N Discrete Fourier Transform (DFT) is defined as

fn;N =
[

FN f̂
]

n
=

N−1
∑

j=0

e−2πi
n j
N f̂j , n = 0, 1, ..., N − 1. (3)

The problem can now be stated as follows: let f̂ be some vector satisfying Eq.(2) and assume samples take

the form of a “clean” signal plus some additive noise: f̂ +ν, where the ν is “small”. Then, an approximation
f̂ is recovered within the noise level from as few measurements and in as few computational steps as possible.
We refer to the case where ||ν|| = 0 as the noiseless case; otherwise, the data is noisy. Finally, we assume

that one has access to a decomposition of N , the total size of the spectrum, of the form: N = K
∏P

i=1 ρi,

where 2 ≤ ρi ≤ ρ = O(1) for i = 1, 2, ..., P , K = O(ρR
√

log(R)) and P = O
(

log
(

N
K

))

. If no such
decomposition exists, it is always possible to slightly increase the value of N and “pad with zeros” such
that the resulting integer possesses such a decomposition. Because the dependence on N is logarithmic, the
impact on computational cost is negligible.

3 A sparse FFT in 1D

In this section, we describe a fast way to compute the one-dimensional DFT of a bandlimited and periodic
function f(x) satisfying Eq.(1)-(2). Our approach to this problem can be broken into two separate steps: in

the first step, the support S of the vector f̂ is recovered, and in the second step, the nonzero values of f̂
are computed using the knowledge of the recovered support. We describe the algorithm in the noiseless case
in this section, followed by a discussion of its stability to noise in Section 3.3. Pseudo-code is provided in
Algorithms 1-4.

Algorithm 1 1DSFFT(R,N, p)

1: Let µ, ∆ and η be estimates for minj∈S |f̂j |, ||f̂||∞
µ

and the noise
√
N ||ν||2 respectively.

2: (In the noiseless case, let η be the desired level of accuracy)
3: S ← FIND SUPPORT(R,N, p, µ,∆)

4: f̂ ← COMPUTE VALUES(S,R, N, p, µ,∆, η)

5: Output: f̂ ,S.

Finding the support. For the remainder of this section, refer to the example in Figure 1. From a high-
level perspective, our support-finding scheme uses three major ingredients: 1)sub-sampling, 2)shuffling and
3)low-pass filtering. Sub-sampling reduces the size of the problem to a manageable level, but leads to
aliasing. Nonetheless, when Eq.(2) is satisfied, an aliased Fourier coefficient is nonzero if and only if its
corresponding aliased lattice contains an element of the true support (note that positivity is crucial here to
avoid cancellation). This provides a useful criterion to discriminate between elements that belong to the
support and elements that do not.

For the example in Figure 1, let k,N,Mk ∈ N, 0 < α < 1 and Sk,Wk,Mk ⊂ {0, 1, ..., N − 1}. Then,

• the aliased support Sk at step k corresponds to the indices of the elements of the true support S modulo
Mk;

• the working support at step k corresponds to the set Wk := {0, 1, ...,Mk − 1};

4

• a candidate support Mk at step k is any set satisfying Sk ⊂ Mk ⊂ Wk of size O(ρR
√

log(R)).

Line 0) (Figure 1) represents a lattice (thin tickmarks) of size: N = 40 = 5
∏3

i=1 2 = K
∏P

i=1 ρi,
which contains only 3 positive frequencies (black dots; S = {1, 23, 35}). In the beginning, (step k = 0)
only the fact that S ⊂ {0, 1, ..., N − 1} is known. The first step (k = 1) is performed as follows: letting

M1 = N
∏

P
i=2 ρi

= ρ1K = O(R
√

log(R)), sample f(x) at xn1
∏

P
i=2 ρi;N

=
n1

∏P
i=2 ρi

N = n1

M1
= xn1;M1 to obtain

fn1
∏

P
i=2 ρi;N

=

N−1
∑

j=0

e−2πi
n1

∏P
i=2 ρi j

N f̂j =

M1−1
∑

l=0

e
−2πi n1 l

M1





∑

j:jmodM1=l

f̂j



 =

M1−1
∑

l=0

e
−2πi n1 l

M1 f̂
(1)
j = fn1;M1

(4)

for n1 ∈ M1 := {0, 1, ...,M1− 1} defined as the candidate support in the first step. The samples correspond

to a DFT of sizeM1 of the vector f̂
(1) with entries that are an aliased version of those of the original vector f̂ ,

as described previously. These can be computed through the FFT in order O(M1 log(M1)) = O(R log
3
2 (R)).

In this first step, it is further possible to rapidly identify the aliased support S1 from the knowledge of f̂ (1)

since the former correspond to the set: {l ∈ {0, 1, ...,M1 − 1} : f̂
(1)
l 6= 0} (due to f̂

(1)
l :=

∑

j:jmodM1=l f̂j >
0 ⇔ l ∈ S1 by Eq.(2)). In our example, M1 = ρ1K = 2 · 5 = 10, which leads to

S1 = {1mod10, 23mod10, 35mod10} = {1, 3, 5} = {l ∈ {0, 1, ..., 9} : f̂ (1)
l 6= 0}; W1 = M1 = {0, 1, ..., 9}.

This is shown on line 1) of Figure 1. For this first step, the working support W1 is equal to the candidate
support M1.

0 N = 40
0)

0 M1 = 10
1)

0 M2 = 20
2)

0 N = 40
3)

Figure 1: Computing the support S. Line 0): Initialization; (unknown) elements of S correspond to black dots and lie in the
grid {0, 1, ...,N − 1}. Line 1): First step; elements of the candidate support M1 are represented by thin tickmarks and those
of the aliased support S1 by thick tickmarks. S1 is a subset of M1 and both lie in the working support {0, 1, ...,M1 − 1}. Line
2): Second step; elements of the candidate support M2 correspond to thin tickmarks and are obtained through de-aliasing of
S1. Elements of the aliased support S2 correspond to thick tickmarks. Both lie in the working support {0, 1, ...,M2 − 1}. M2

is a constant factor of M1. Line 3): The final step correspond to the step when the working is equal to {0, 1, ...,N − 1}.

Then, proceed to the next step (k = 2) as follows: letM2 = ρ2M1 = K
∏2

i=1 ρi = 5 ·22 = 20 and consider
the samples

fn2
∏

P
i=3 ρi;N

=

M2−1
∑

l=0

e−2πi
n2l

M2





∑

j:jmodM2=l

f̂j



 =

M2−1
∑

l=0

e−2πi
n2 l

M2 f̂
(2)
l = fn2;M2

for n2 = 0, 1, ...,M2 − 1 as before. Here however, knowledge of S1 is incorporated. Indeed, since M2 is a
multiple of M1, it follows upon close examination that: S2 ⊂ ∪ρ1−1

k=0 (S1 + kM1) := M2. That is, the set
M2, defined as the union of ρ1 = O(1) translated copies of S1, must itself contain S2. Furthermore, it is
of size O(ρ1 #S1) = O(ρR) by construction. It is thus a proper candidate support (by definition). In our
example, one obtains

∪1
k=0 (S1 + kM1) = {1, 3, 5} ∪ {1 + 10, 3 + 10, 5 + 10} = {1, 3, 5, 11, 13, 15}= M2,

5

which contains the aliased support: S2 = {1mod20, 23mod20, 35mod20} = {1, 3, 15} as shown on on line
2) of Figure 1. The working support becomes W2 := {0, 1, ..., 19}. Once again, it is possible to recover

S2 by leveraging the fact that {l ∈ {0, 1, ...,M2 − 1} : f̂
(2)
l 6= 0} = S2. Here however, the cost is higher

since computing f̂ (2) involves performing an FFT of size M2 = 20. Continuing in this fashion, the cost
will increase exponentially with k, so additional steps are required to contain the cost. Such steps involve
a special kind of shuffling as well as a filtering of the samples followed by an FFT, and we describe this in
detail below. All together, Sk can now be recovered from the knowledge of Mk at any step k using merely

O(R
√

log(R)) samples and O(R log
3
2 (R)) computations.

Following the rapid recovery of S2, proceed in a similar fashion until Wk := {0, 1, ..., N − 1} (P =
O
(

log
(

N
R

))

times) at which point Sk = S. Throughout this process, the size of the aliased support Sk and
candidate support Mk remain of order O(R) while the size of the working support increases exponentially

fast; i.e., #Wk = O(K
∏k

i=1 ρi) ≥ 2k · R. Since going from step k to step k + 1 (computing Sk from
Mk and de-aliasing) has the scaling just described, this implies the claimed cost. This therefore implies

O(log(N)) “dealiasing” steps and a total cost of O
(

R
√

log(R) log (N)
)

samples and O
(

R log
3
2 (R) log

(

N
R

)

)

computational steps to identify S. The steps of this support-recovery algorithm are described in Algorithm 2,
the correctness of which is guaranteed by the following proposition:

Proposition 1. In the noiseless case, Algorithm 2 outputs S, the support of the vector f̂ satisfying Eq.(2),
with probability at least (1− p).

Proof. Refer to Algorithm 2 and Proposition 5 (Appendix A.1).

From the knowledge of S, it is possible to recover the actual values of f̂ rapidly and with few samples.
This is the second major step of the sMFFT which we describe below in Section 3.1.

Algorithm 2 FIND SUPPORT(R, Ñ, p, µ,∆)

1: Pick 2 ≤ ρ and 0 < δ ≪ 1.

2: Let α = 1
ρ
, K =

max{8, 2
α

}

π
R

√

log
(

2R∆
δ

)

log
(

2∆
δ

)

and choose N = K
∏P

i=1 ρi ≥ Ñ where 2 ≤ ρi ≤ ρ ∀ i

3: Let M1 = K andM1 := {0, 1, ...,M1 − 1}.
4: for k from 1 to P do

5: Sk ← FIND ALIASED SUPPORT(Mk,Mk,K, α, p, δ, µ,∆)

6: Mk+1 := ∪ρk−1

m=0 (Sk + mMk).
7: Mk+1 := ρk Mk

8: α← 1
ρi

9: end for

10: Output: SP .

3.1 Rapid recovery of Sk from knowledge of Mk.

Details are given here as to how to solve the problem of rapidly recovering the aliased support Sk from the
knowledge of a candidate support Mk. Before proceeding, a few definitions are introduced.

Definition 1. Let 1 ≤ K ≤M ∈ N. Then, define the set A(K;M) as,

A(K;M) :=

{

m ∈ {0, 1, ...,M − 1} : m ≤ K

2
or |m−M | < K

2

}

Definition 2. Let 0 < M ∈ N. Then, the set Q(M) := {q ∈ [0,M) ∩ Z : q ⊥M}, where the symbol ⊥
between two integers indicates they are coprime.

Algorithm 3 shows how to solve the aliased support recovery problem rapidly; correctness is guaranteed
by Proposition 2, which relies on Proposition 5 (Appendix A.1). Proposition 5 states that if the elements of
an aliased vector of size Mk with aliased support Sk containing at most R nonzeros are shuffled (according
to appropriate random permutation) and subsequently convoluted with a (low-frequency) Gaussian, then
the probability that the resulting value at a location m ∈ Sc

k is of order O(1) is small. If m ∈ Sk, the value
at m is of order O(1) with probability 1. This realization allows us to develop an efficient statistical test
to identify Sk from the knowledge of Mk. The process is shown schematically in Figure 2. Specifically,

6

the four following steps are performed: 1) permute samples randomly, 2) apply a diagonal Gaussian filter,
3) compute a small FFT, 4) eliminate elements that do not belong to aliased support. To help the reader
better understand, we once again proceed through an example. To begin, assume Mk = 40, and

Sk = {1, 23, 35}, Mk = {1, 3, 15, 21, 23, 35},Wk = {1, 2, ..., 39}

as in step k = 3 of the previous section. Refer to Figure 2. The first step is to randomly shuffle the elements
of Mk within Wk by applying a permutation operator ΠQ(·) in sample space

ΠQ (fn;Mk
) = f(nQ)modMk;Mk

(5)

for some integer Q ∈ Q(Mk). By Lemma 3 (AppendixA.1), this is equivalent to shuffling in frequency space

as: f̂
(k)
l → f̂

(k)

(l[Q]−1
Mk

)modMk

([Q]−1Mk
being the unique inverse of Q modulo Mk). Furthermore, Lemma 4

(Appendix A.1) shows that if Q is chosen uniformly at random within Q(Mk), the mapped elements of the
candidate support Mk will be uniformly distributed within the working support Wk,

P
(∣

∣(i[Q]−1Mk
)modMk − (j[Q]−1Mk

)modMk

∣

∣ ≤ C
∣

∣ i 6= j
)

≤ O
(

C

Mk

)

.

For the illustrative example, assume [Q]−1Mk
= 13. The sets Sk and Mk are then mapped by ΠQ(·) to (line

B), Figure 2).

Sshuffled
k = {(1 · 13)mod40, (23 · 13)mod40, (35 · 13)mod40} = {13, 15, 19}

Mshuffled
k = {(1 · 13)mod40, (3 · 13)mod40, (15 · 13)mod40, (21 · 13)mod40, (23 · 13)mod40, (35 · 13)mod 40}

= {13, 15, 19, 33, 35, 39}

1 3 15 21 23 35
A)

33 35 3913 15 19
B)

33 35 3913 15 19
C)

Figure 2: Finding the aliased support Sk from knowledge of Mk (line A)). First, indices are shuffled in sample space leading
to a shuffling in frequency space (line B)). A Gaussian filter is applied followed by a small FFT (line C)) on a grid G. The
points of Mk for which the value of the result of the last step at their closest neighbor in G is small are discarded leaving only
the aliased support Sk.

This step is followed by the application of a diagonal Gaussian filtering operator Ψσ(·) having elements

1

Mk
gσ

(

m

Mk

)

=

√
πσ

Mk

∑

h∈Z
e−π

2σ2(m+hM
M)2 (6)

in sample space (step 2). By the properties of the Fourier transform, this is equivalent to a convolution in
frequency space (line C), Figure 2), implying the equality:

[Ψσ (ΠQ (fn;Mk
))] (ξ) = F∗





∑

j∈Sk
f̂
(k)
j e−

∣

∣

∣

∣

x−

(

j[Q]
−1
Mk

modMk

)∣

∣

∣

∣

2

σ2



 (ξ). (7)

The function is now bandlimited (with bandwidth of order O(K) thanks to our choice for σ; Algorithm 3),
so this expression can be discretized (samples ×, Figure 2) to produce our main expression,

φ(k)n (Q) = FA(K,Mk) [Ψσ (ΠQ (fn;Mk
))]n =

1

Mk

∑

m∈A(K,Mk)

e2πi
nm
K gσ

(

m

Mk

)

f(mQ)modMk;Mk
(8)

7

In particular, we note that if n if of the form jMk

K for j = 0, ...,K − 1, the last step can be performed
through a small size-K FFT. This corresponds to step 3 of the aliased support recovery algorithm. The

knowledge of

{

φ
(k)

j
Mk
K

}K=1

j=0

can be used to recover Sk from Mk rapidly, seen intuitively as follows: by

construction φ
(k)
n is “large” only if the distance between a shuffled element

{

l[Q]−1Mk
)modMk

}

l∈Sk
of the

aliased support, and (n[Q]−1Mk
)modMk is smaller than O(σ), which in turn occurs only if the distance between

[

(

n[Q]−1Mk
modMk

)

K
Mk

]

Mk

K and the shuffled elements of the aliased support is smaller than O(σ) as well.

However, because of the randomness introduced by the shuffling, and because of the particular choice of σ, it

can be shown (Proposition 5) that for any fixed i ∈ Mk, the probability that a computed element φ
(k)
[

i K
Mk

]

Mk
K

is “large” for multiple independent trials is small if i ∈ Mk ∩ Sc
k and equal to 1 if i ∈ Mk ∩ Sk. This fact

allows for the construction of an efficient statistical test based on the knowledge of the quantities found in
Eq.(8) to discriminate between the points of Mk ∩Sc

k and those of Mk ∩Sk (step 4). Such a test constitutes
the core of Algorithm 3, and its correctness follows from the following proposition (Appendix A.1).

Proposition 2. In the noiseless case, Algorithm 3 outputs Sk, the aliased support of the vector f̂ at step k,
with probability at least (1− p).

Proof. Refer to Algorithm 3 and Proposition 5.

As for the computational cost, the permutation and filtering (multiplication) step (1 and 2) both incur
a cost of O(R

√

log(R)) since only the samples for which the filter is of order O(1) are considered (and there

are O(K) = O(R
√

log(R)) of them following our choice of σ and K). These are followed by an FFT (step 3)
of size O(K). Finally, step 4 involves checking a simple property on each of theMk elements of Mk incurring
a cost of O(R). This is repeated O(log(p)) times for a probability (1 − p) of success. In conclusion, this

implies that extracting Sk from Mk requires merely O(log(p)R
√

log(R)) samples and O(log(p)R log
3
2 (R))

computational time for fixed p, as claimed.

Algorithm 3 FIND ALIASED SUPPORT(Mk,Mk,K, α, p, δ, µ,∆)

1: Let σ =
α

Mk
2R

√

log
(

2R∆
δ

)

and L = logα(p).

2: Sk ←Mk

3: for l from 1 to L do

4: Pick Q(l) ∈ Q(Mk) uniformly at random.

5: Compute: φ
(k)

j
Mk
K

(Q(l)), j = 0, 1, ...,K − 1 (Eq.(8)).

6: for j ∈ Mk do

7: if

∣

∣

∣

∣

∣

∣

φ
(k)
[(

j[Q(l)]
−1
Mk

mod Mk

)

K
Mk

]

Mk
K

(Q(l))

∣

∣

∣

∣

∣

∣

< δ µ then

8: Remove j from Sk.
9: end if

10: end for

11: end for

12: Output: Sk.

3.2 Recovering values from knowledge of the support

In this section, assume a set size O(R) containing the support S ⊂ {0, 1, 2, ..., N−1} has been recovered. The

values of the nonzero Fourier coefficients of f̂ in Eq. (1) can be rapidly computed u sing this information. For

this purpose, assume f(x) can be sampled at locations:
{

qQ(t) modP (t)

P (t)

}P (t)

q=1
for t = 0, 1, ..., T , and {P (t)}Tt=1

some random prime numbers on the order of O(R logR(N)) (see Algorithm 4). It follows that

f
(t)

qQ(t) modP (t);P (t) =
∑

j∈S
e
−2πi q ((jQ(t))mod P(t))

P (t) f̂j =
P (t)−1
∑

l=0

e
−2πi q l

P (t)







∑

j∈S:j[Q(t)]−1

P(t)
modP (t)=l

f̂j






(9)

8

for t = 0, 1, ..., T . The outer sum is seen to be a DFT of size P (t) of a shuffled and aliased vector, whereas

the inner sum can be expressed as the application of a binary matrix B
(t)
q,j with entries

B
(t)
q,j =

{

1 if j[Q(t)]−1
P (t) modP (t) = q

0 else

to the vector with entries’ index corresponding to the support of f̂ . In particular, each such matrix is sparse
with exactly #S = O(R) nonzero entries. Eq. (9) can further be written in matrix form as

[FB] f̂ =









F (1) 0 ... 0
0 F (2) ... 0
...

0 0 ... F (T)

















B(1)

B(2)

...

B(T)









f̂ =









f (1)

f (2)

...

f (T)









= f0, (10)

where F (t) is a standard DFT matrix of size P (t). Proposition 6 states that if T ≥ O(R logR(N)), then
with nonzero probability 1

T (FB)∗(FB) = I + P , where I is the identity and P is a perturbation with
2-norm smaller than 1

2 . When this occurs, one can solve the linear system through the Neumann series,

f̂ =
∑∞

n=0 Pn (FB)∗f0 as performed in Algorithm 4 with correctness in Proposition 3.

Proposition 3. (Correctness of Algorithm 4) Assume the support S of f̂ is known. Then Algorithm 4 outputs

an approximation to the nonzero elements of f̂ with error bounded by η in the ℓ2-norm, with probability greater
than or equal to 1− p.

Since each matrix B(t) contains exactly R nonzero entries, both B and B∗B can be applied in order
RT = O(R logR(N)) steps and performed O(log(η)) times (truncation of Neumann series). In addition,
since F is a block diagonal matrix with T = O(1) blocks consisting of DFT matrices of size O(R logR(N)),
it can be applied in order O(R log(R) logR(N)) thanks to the FFT. Finally, this is performed at most log(p)

times for a probability p of success. Therefore, the cost of computing the nonzero values of f̂ is bounded by
O (log(p)R logR(N) (log(R) + log(η))) and uses at most O (log(p)R logR(N)) samples as claimed.

Algorithm 4 COMPUTE VALUES(S, R, N, p, µ,∆, η)

1: Let T = 4, Z = ⌈log 1
2
(η)⌉ and L = ⌈log 1

2
(p)⌉.

2: for t from 1 to L do

3: Pick {P (t)}Tt=1 i.i.d. uniform r.v. chosen among the set containing the smallest 4R logR(N) prime numbers greater than R.

4: Sample
{

f
n mod P(t);P(t)

}P(t)−1

n=0
, t = 1, ..., T

5: Compute f̂0 ← (FB)∗f0 (Eq.(9)).

6: if ||(B∗B) f̂0||2 < 1
2 then

7: f̂ ←
∑Z

n=0(I − B∗B)nf̂0

8: Output: f̂ .
9: Exit.
10: end if

11: end for

3.3 Stability

As discussed previously, the theory underlying the algorithms introduced in Section 3 have been designed
for vectors which are exactly sparse. In this section, we discuss the effect of noise and approximate sparsity.
In fact, if the sparse vector of Fourier coefficients take the form f̂ + ν̂, where ||ν̂||2 < η√

N
for some “small”

η, the sMFFT algorithm recovers the support and values of f̂ with the same guarantees as described earlier.
Support. The most important quantity for the fast recovery of the support is Eq.(8), so in the presence

of noise,

φ(k)n (Q) =
1

Mk

∑

m∈A(K,Mk)

e2πi
nm
K gσ

(

m

Mk

)

(

f(mQ)modMk;Mk
+ ν(mQ)modMk;Mk

)

. (11)

The second term in this expression is the error term and can be uniformly bounded by the following lemma:

9

Lemma 1. Assuming the noise term ν̂ is such that ||ν̂||2 < η√
N
, the error term of the computed value in

Eq.(11) is uniformly bounded by

∣

∣

∣

∣

∣

∣ψ(k)
n (Q)

∣

∣

∣

∣

∣

∣

∞
=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

Mk

∑

m∈A(K,Mk)

e2πi
nm
K gσ

(

m

Mk

)

ν(mQ) modMk;Mk

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞

< O(η).

Algorithm 2 tests whether

∣

∣

∣

∣

φ
(k)
[

i K
Mk

]

Mk
K

(Q(l))

∣

∣

∣

∣

> δ µ in order to discriminate between elements of the

candidate and aliased supports. The presence of noise can skew this test in two ways: 1) by bringing the
computed value below the threshold when i ∈ Sk or 2) by bringing the value above the threshold multiple

times when i 6∈ Sk. Either way, if η is small enough such that
∣

∣

∣

∣

∣

∣ψ
(k)
n (Q)

∣

∣

∣

∣

∣

∣

∞
≤ δµ

2 , then
∣

∣

∣φ
(k)
n (Q(l))

∣

∣

∣ >

δ µ− δµ
2 = δµ

2 by the triangular inequality and Lemma 1. Under these circumstances, it can be shown that

the conclusion of Proposition 5 follows through with similar estimate, by simply replacing δ with δ
2 in the

proof.
Recovering values from knowledge of the support. It is quickly observed that the recovery of the values

is a well-conditioned problem. Indeed, since 1
T (FB)∗(FB) = I −P , and ||P||2 ≤ 1

2 with high probability by
Proposition 6, a simple argument based on the singular value decomposition produces the following corollary,

Corollary 1. Under the hypothesis of Proposition 6,
(

1
T (FB)∗(FB)

)−1
exists, and

∣

∣

∣

∣

∣

∣

(

1
T (FB)∗(FB)

)−1
∣

∣

∣

∣

∣

∣

2
≤

2 with probability greater than or equal to 1
2 .

Therefore, the output of Algorithm 4 is such that

||f̂ sMFFT − f̂ ||2 ≤
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

1

T
(FB)∗(FB)

)−1
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

||(FB)∗ν||2 ≤ 2||B||2 ||ν||2 = O(η),

which, together with Proposition 3, demonstrates the stability of Algorithm 4 in the noisy case.

4 The multi-dimensional sparse FFT

Whenever dealing with the multidimensional DFT/FFT, it is assumed that the function of interest is both

periodic and bandlimited with fundamental period [0, 1)d, i.e., f(x) =
∑

j∈([0,M)∩Z)d e
−2πi x·j f̂j for some

finite M ∈ N and j ∈ Zd (up to some rescaling). Computing the Fourier coefficients is then equivalent to

computing the d-dimensional integrals f̂n =
∫

[0,1]d e
−2πi n·x f(x) dx, and this is traditionally achieved through

a “dimension-by-dimension” trapezoid rule [7, 36]

f̂(j1,j2,...,jd) =

M−1
∑

n1=0

e2πi
j1n1
M

M



...





M−1
∑

nd−1=0

e2πi
jd−1nd−1

M

M

(

M−1
∑

nd=0

e2πi
jdnd
M

M
f(n1,n2,...,nd)

)







 . (12)

However, Proposition 4 shows that it is also possible to re-write the d-dimensional DFT as that of a 1D
function with Fourier coefficients equal to those of the original function, but with different ordering.

Proposition 4. (Rank-1 d-dimensional DFT) Assume the function f : [0, 1)d → C has form (12). Then,

∫

[0,1]d
e−2πi j·x f(x) dx =

1

N

N−1
∑

n=0

e−2πi j·xn f(xn) (13)

for all j ∈ [0,M)d ∩ Zd, where xn = ngmodN
N , g = (1,M,M2, ...,Md−1) and N =Md.

10

Now, Eq. (13) can be written in two different ways (due to periodicity); namely,

1

N

N−1
∑

n=0

e−2πi j·
ng modN

N f

(

ngmodN

N

)

=
1

N

∑

n

e−2πi
(j·g)n

N f
(ng

N

)

Geometrically, the left-hand side represents a quadrature rule with points xn = ngmodN
N distributed

(more-or-less uniformly) in [0, 1)d (Figure 3, left; grey dots). The right-hand side represents an equivalent
quadrature where the points xn = ng

N now lie on a line embedded in Rd (Figure 3, right; grey dots). The
location at which the lattice (thin black lines) intersects represents the standard multidimensional DFT
samples. In short, Proposition 4 allows one to write any d-dimensional DFT as a one-dimensional DFT

Figure 3: Geometric interpretation of rank-1 d-dimensional DFT in 2D. The thick black box represents fundamental periodic
domain. The grey dots represent rank-1 discretization points. The 2D grid represents standard discretization points. Left: the
rank-1 d-dimensional quadrature interpreted as a 2D discretization over the fundamental periodic region. Right: the rank-1
d-dimensional quadrature interpreted as a uniform discretization over a line in R2.

by picking the appropriate sample points (Proposition 4) and proceeding to a re-ordering of the Fourier
coefficients through the isomorphism

ñ :
{

n ∈ ([0,M) ∩ Z)D
}

→ n · g = n0 + n1M + ...+ nD−1M
D−1 ∈ [0,MD) ∩ Z

D.

In Section 5, we use this scheme for achieving our sMFFT numerical results.

5 Numerical results

We have implemented our sMFFT algorithm in MATLAB3 and present a few numerical results which exhibit
the claimed scaling. All simulations were carried out on a small cluster possessing 4 Intel Xeon E7-4860 v2
processors and 256GB of RAM, with the MATLAB flag −singleCompThread to ensure fairness through the
use of a single computational thread. The numerical experiments presented here fall in two categories: 1)
dependence of running time as a function of the total number of unknowns N for a fixed number of nonzero
frequencies R, and 2) dependence of running time as a function of the number of nonzero frequencies R
for a fixed total number of unknowns N . All experiments were carried out in three dimensions (3D) with

additive Gaussian noise with variance η. The nonzero values of f̂ were picked randomly and uniformly
at random in [0.5, 1.5], and the remaining parameters were set according to Table 2. All comparisons are
perdormed with the MATLAB fftn(·) function, which uses a dimension-wise decomposition of the DFT (see
Section 4) and a 1D FFT routine along each dimension. For case 1), we picked R = 50 nonzero frequencies

Table 2: Values of parameters required by Algorithm 1-4 and used for numerical experiments

Parameter Description Value (Case 1) Value (Case 2)

N Total number of unknowns variable 108

R Number of nonzero frequencies 50 variable
α Gaussian filter parameter 0.15 0.15
δ Statistical test parameter 0.1 0.1

p Probability of failure 10−4 10−4

d Ambient dimension 3 3

η Noise level 10−2 10−2

distributed uniformly at random on a 3D lattice having N1/3 elements in each dimension for different values

3
MATLAB is a trademark of Mathworks

11

of N ∈ [103, 1010]. The results are shown in Figure 4 (left). As can be observed, the cost of computing
the DFT through the sMFFT remains more or less constant with N , whereas that the the MATLAB fftn(·)
function increases linearly. This is the expected behavior and demonstrates the advantages of the sMFFT
over the FFT. Also note that the largest relative ℓ2-error observed was 9.3 · 10−3 which is on the order of
the noise level, as predicted by the theory.

4 5 6 7 8 9

−2

0

2

Number of unknowns - log10 (N)

R
u
n
n
in
g
ti
m
e
-
lo
g
1
0
(t
)

fftn(·) (Matlab)
sMFFT

1 2 3 4

−2

−1.5

−1

−0.5

0

0.5

Number of nonzero frequencies - log10 (R)

R
u
n
n
in
g
ti
m
e
-
lo
g
1
0
(t
)

fftn(·) (Matlab)
sMFFT

Figure 4: Left: Running time vs number of unknowns (N) for the MATLAB fftn(·) (black) and the sMFFT (red) in three
dimensions (3D), with R = 50 nonzeros and noise η = 10−3. Right: Running time vs number of nonzero frequencies (R) for
the MATLAB fftn(·) (black) and the sMFFT (red) in three dimensions (3D) and for N = 108 and noise η = 10−3.

For case 2), we fixed N = O(108) and proceeded to compare the sMFFT algorithm with the MATLAB

fftn(·) function as before (w/ parameters found in Table 2). The results are shown in Figure 4 (right).
In this case, the theory states that the sMFFT algorithm should scale quasi-linearly with the number of
nonzero frequencies R. A close look shows that it is indeed the case. For this case, the largest relative
ℓ2-error observed was 1.1 · 10−2, again on the order of the noise level and in agreement the theory. Finally,
the cost fftn(·) function remains constant as the FFT scales like O(N log(N)) and is oblivious to R.

6 Conclusion

We have introduce a sparse multidimensional FFT (sMFFT) for computing the DFT of a N × 1 sparse,
real-positive vector (having R nonzeros) exhibiting the best scaling up to date per regards to sampling

(O(R
√

log(R) log(N))) and time (O(R log
3
2 (R) log(N))) complexities, as well as probability of success (O(log(p))),

accuracy (O(log(η))) and dimension (O(1)). The scheme is also stable to noise. We have provided a rigorous
theoretical analysis of our approach demonstrating each claim. Finally, we have implemented our algorithm
and provided numerical examples in 3D succesfully demonstrating the claimed scaling.

12

A Proofs

In this appendix, we present all proofs and accompanying results related to the statements presented in the
main body of the work.

A.1 Proofs of Section 3

Lemma 2. Let 0 < Q ≤ N ∈ N, Q ⊥ N . Then the map,

n ∈ {0, 1, ..., N − 1} → nQmodN ⊂ {0, 1, ..., N − 1}

is an isomorphism.

Proof. Since the range is discrete and a subset of the domain, it suffices to show that the map is injective.
Surjectivity will then follow from the pigeon hole principle. To show injectivity, consider i, j ∈ {0, 1, ..., N−1},
and assume,

iQmodN = jQmodN

This implies (by definition) that there exists some integer p such that,

(i − j)Q = pN

so that N divides (i − j)Q. However, N ⊥ Q so N must be a factor (i − j). Now, i, j are restricted to
{0, 1, ..., N − 1} so,

|i− j| < N,

and the only integer divisible by N that satisfies this equation is 0. Thus,

i− j = 0 ⇔ i = j

which demonstrates injectivity.

Lemma 3. Let 0 < Q < M be an integer coprime to M and,

fn =

M−1
∑

l=0

e−2πi
n l
M f̂l

Then,

1

M

M−1
∑

n=0

e2πi
mn
M f(nQ)modM = f̂(m[Q]−1

M
)modM

where 0 < [Q]−1M < M is the unique integer such that [Q]−1M QmodM = 1modM .

Proof. Consider

1

M

M−1
∑

n=0

e2πi
m n
M f(nQ)modM =

M−1
∑

l=0

(

1

M

M−1
∑

n=0

e2πi
n
M

(m−QlmodM)

)

f̂l

=

M−1
∑

l=0

(

1

M

M−1
∑

n=0

e2πi
nQ
M (m[Q]−1

M
modM−l)

)

f̂l

However,

1

M

M−1
∑

n=0

e2πi
nQ
M (m[Q]−1

M modM−l) =
1

M

M−1
∑

j=0

e2πi
j
M (m[Q]−1

M modM−l) = δm[Q]−1
M

modM,l,

13

where the second equality follows from the fact that m → m[Q]−1M modM is an isomorphism (Lemma 2).
This implies that

1

M

M−1
∑

n=0

e2πi
mn
M f(nQ) modM = f̂(m[Q]−1

M
)modM

as claimed.

Lemma 4. Let M ∈ N/{0} and let Q be a uniform random variable over Q(M) (Definition 2). Then,

P (|jQmodM | ≤ C) ≤ O
(

C

M

)

for all 0 < j < M (up to a log(log(M)) factor).

Proof. Fix 0 < j, k < M and let γ = gcd(j,M). Consider,

P (jQmodM = k) =
∑

q∈Q(M)

P (jqmodM = k|Q = q) P(Q = q) =
∑

q∈Q(M)

Ijq modM=k(q)P(Q = q)

and note that,

P(Q = q) =
1

#Q(M)
=

1

φ(M)
≤
eζ log(log(M)) + 3

log(log(M))

M

following bounds on the Euler totient function φ(·) ([35]), where ζ is the Euler-Mascheroni constant, and
since Q is uniformly distributed in Q(M). Therefore,

P (jQmodM = k) ≤
eζ log(log(M)) + 3

log(log(M))

M

∑

q

Ijq modM=k(q)

We now show that the quantity
∑

q Ijq modM=k(q) is bounded above and below by,

γ − 1 ≤
∑

q

Ijq modM=k(q) ≤ γ

To see this, first note that this quantity corresponds to the number of integers q which hash to the integer
k through the map q → (jq)modM . Now, assume there exists some q such that

jqmodM ≡ k, (14)

which implies that
jq + iM = k (15)

for some integer i ∈ Z. This is a Diophantine equation which has infinitely many solutions if and only if
gcd (j,M) = γ divides k ([29]). Otherwise, it has no solution. Assuming it does and (q0, i0) is a particular
solution, all remaining solutions must take the form

q = q0 + u
M

γ
, i0 − u

j

γ

where u ∈ Z. However, since 0 ≤ q < M the number of possible solutions must be such that,

γ − 1 ≤ #

{

q ∈ [0,M) : q = q0 + u
M

γ

}

≤ γ.

which proves the claim. Thus,

P (jQmodM = k) ≤
(

eζ log(log(M)) +
3

log(log(M))

)

γ

M

14

We can now treat P (|jQmodM | ≤ C). Before we proceed however, recall that Eq.(14) has a solution if and
only if γ|k. We then write,

P (|jQmodM | ≤ C) =
∑

0≤k≤C
Iγ|k(k)P (nQmodM = k)

from which it follows that,

P (|jQmodM | ≤ C) ≤
(

eζ log(log(M)) +
3

log(log(M))

)

γ

M

∑

0≤k≤C
Iγ|k(k)

≤
(

eζ log(log(M)) +
3

log(log(M))

)

γ

M

C

γ

≤
(

eζ log(log(M)) +
3

log(log(M))

)

C

M

since the number of integers in 0 ≤ k ≤ C that are divisible by γ is bounded above by C
γ . Finally, since this

holds regardless of our choice of j, this proves the desired result.

Lemma 5. Consider a function f(x) of the form of Eq.(1) and satisfying the constraint Eq.(2). Let 0 <

σ = O
(

M

R
√

log(R)

)

, 0 < δ < 1 and,

µ = min
j∈S

|f̂j |

∆ =
maxj∈S |f̂j |
minj∈S |f̂j |

=
||f̂ ||∞
µ

Finally, let FA(K;M)(·) and Ψσ(·) be the operators found in Eq.(8). Then, there exists a constant 1 < C <∞
such that if,

K ≥ C
M
√

log
(

2∆
δ

)

π σ
(16)

the inequality,
[

FA(K;M) (Ψσ (fk;M))
]

nM
K

≥ δ µ

implies that

inf
j∈S

∣

∣

∣

∣

n
M

K
− j

∣

∣

∣

∣

≤ σ

√

log

(

2R∆

δ

)

(17)

and,

inf
j∈S

∣

∣

∣

∣

n
M

K
− j

∣

∣

∣

∣

≤ σ

√

log

(

1

δ

)

,

implies that
[

FA(K;M) (Ψσ (fk;M))
]

nM
K

≥ δ µ

for all n ∈ {0, 1, ...,K − 1}.

Proof. Consider the quantity

1

M

∑

m∈A(K;M)

e2πi
n M

K
m

M ĝσ

(m

M

)

fm;M =
∑

j∈S





1

M

∑

m∈A(K;M)

e2πi
m
K

(n−j)ĝσ
(m

M

)



 f̂j (18)

and recall that,
1

M
ĝσ

(m

M

)

=

√
πσ

M

∑

h∈Z
e−π

2σ2(m+hM
M)2

15

where A(K;M) :=
{

m ∈ {0, 1, ...,M − 1} : m ≤ K
2 or |m−M | < K

2

}

(Definition 1). From this expression,

it is apparent that there exists some constant 1 < C <∞ such that by choosing K ≥ C
M

√

log(2∆
δ)

π σ , one has,

∣

∣

∣

∣

∣

∣

∑

j∈S





1

M

∑

m∈Ac(K;M)

e2πi
m
K

(n−j)ĝσ
(m

M

)



 f̂j

∣

∣

∣

∣

∣

∣

≤
∑

m∈Ac(K;m)

(√
πσ

M

∑

h∈Z
e−π

2σ2(m+hM
M)

2

)

||f̂ ||∞ ≤ δµ

2

Indeed, by the integral test,

∑

m∈Ac(K;m)

(√
πσ

M

∑

h∈Z
e−π

2σ2(m+hM
M)2

)

≤ A

√
πσ

M

∑

m≥K
2

e−π
2σ2(m

M)2

≤ A

√
πσ

M
e−π

2σ2(K
2M)

2

+

√
πσ

M

∫ ∞

K
2

e−x
2(πσ

M)
2

dx

≤ A

√
πσ

M
e−π

2σ2(K
2M)2 +

1√
π
erfc

(

πKσ

2M

)

≤ B e−π
2σ2(K

2M)2

for some positive constants A,B, and where the last inequality follows from estimates on the complementary

error function [6] and the fact that
√
πσ
M = O

(

1

R
√

log(R)

)

by assumption. Therefore,

[

FA(K;M) (Ψσ (fm;M))
]

nM
K

=
1

M

∑

m∈A(K;M)

e2πi
n m
K ĝσ

(m

M

)

fm;M

=
1

M

M−1
∑

m=0

e2πi
n M

K
m

M ĝσ

(m

M

)

fm;M + ǫn

=
∑

j∈S
e−

(nM
K

−j)
σ2 f̂j + ǫn

where maxn |ǫn| ≤ δ µ
2 . Now assume: |

[

FA(K;M) (Ψσ (fk;M))
]

nM
K

| ≥ δ µ. Then, the triangle inequality and

the previous equation imply that,

∑

j∈S
e−

(n M
K

−j)
σ2 f̂j ≥

∣

∣

∣

[

FA(K;M) (Ψσ (fm;M))
]

nM
K

∣

∣

∣
− δ µ

2
≥
(

δ − δ

2

)

µ =
δ

2
µ. (19)

We claim that this cannot occur unless,

inf
j∈S

∣

∣

∣

∣

n
M

K
− j

∣

∣

∣

∣

≤ σ

√

log

(

2R∆

δ

)

. (20)

We proceed by contradiction. Assume the opposite holds. Then,

∑

j∈S
e−

(n M
K

−j)
σ2 f̂j ≤ ||f̂ ||∞

∑

j∈S
e−

(n M
K

−j)
2

σ2 < ||f̂ ||∞
δ

2∆
=
δ µ

2

by assumption. This is a contradiction. Thus, Eq.(20) must indeed hold. This proves the first part of the
proposition. For the second part, assume

inf
j∈S

∣

∣

∣

∣

n
M

K
− j

∣

∣

∣

∣

≤ σ

√

log

(

1

δ

)

(21)

16

holds. Letting j∗ be such that
∣

∣nM
K − j∗

∣

∣ = infj∈S
∣

∣nM
K − j

∣

∣, we note that,

∑

j∈S
e−

(n M
K

−j)
2

σ2 f̂j ≥ e−
(n M

K
−j∗)

2

σ2 f̂j∗ ≥ δ µ

since f̂ and the Gaussian are all positive by assumption. This shows the second part.

We are now ready to prove the validity of the Algorithm 1.

Proposition 5. (Correctness of Algorithm 3) Consider a function f(x) of the form of Eq.(1) and satisfying
the constraint Eq.(2), and let ΠQ(·), Ψσ(·) and FK(·) be the operators found in Eq.(8) where δ, µ, ∆ and K

are as in Lemma 5 and K satisfies the additional constraint K > R
α

√

log(2R∆
δ)

log(1
δ)

, and

σ =
α M

2R
√

log
(

2R∆
δ

)

(22)

for some 0 < α < 1. Assume further that the integers {Q(l)}Ll=1 are chosen independently and uniformly at
random within Q(M), for some 1 ≤ L ∈ N. Consider

φ[i K
M]MK

(Q(l)) :=
[

FA(K;M)

(

Ψσ

(

ΠQ(l) (fk;M)
))]

[i K
M]MK

(23)

Then,

P

(

∩L
l=1

{

|φ[(i[Q]−1
M modM) K

M] M
K
(Q(l)| ≥ δ µ

})

≤ αL (24)

for every i ∈ Sc, and
|φ[(i[Q]−1

M modM) K
M]MK

(Q(l))| ≥ δ µ

almost surely for all Q(l) and every i ∈ S.

Proof. From independence, the probability in Eq. (24) is equal to,

L
∏

l=1

P

(∣

∣

∣φ[(i[Q]−1
M modM) K

M] M
K
(Q(l))

∣

∣

∣ ≥ δ µ
)

.

So it is sufficient to consider a fixed l. As a consequence of Lemma 5 and Lemma 3 we have the inclusion,

{

|φ[(i[Q]−1
M modM) K

M] M
K
(Q(l))| ≥ δ µ

}

⊂
{

inf
j∈S

∣

∣

∣

∣

[

(i[Q(l)]−1M modM)
K

M

]

M

K
− (j[Q(l)]−1M)modM

∣

∣

∣

∣

≤ σ

√

log

(

2R∆

δ

)

}

⊂ ∪j∈S

{

∣

∣

∣((i − j)[Q(l)]−1M)modM
∣

∣

∣ ≤ σ

√

log

(

2R∆

δ

)

+
M

2K

}

,

which implies that the probability for each fixed l is bounded by,

P

(

|φ[(i[Q]−1
M modM) K

M] M
K
(Q(l))| ≥ δ µ

)

≤
∑

j∈S
P

(

∣

∣

∣((i− j)[Q(l)]−1M)modM
∣

∣

∣ ≤ σ

√

log

(

2R∆

δ

)

+
M

2K

)

≤ O



R





σ
√

log
(

2R∆
δ

)

+ M
2K

M









= O(α),

17

by the union bound, by Lemma 4 (since i 6= j) and by assumption. Therefore,

P

(

∩L
l=1

{

|φ[i K
M]MK

(Q(l))| ≥ δ µ
})

≤ O
(

αL
)

as claimed. As for the second part of the proposition, note that if i ∈ S then

inf
j∈S

∣

∣

∣

∣

∣

[

(i[Q(l)]−1M)modM
M
K

]

M

K
− (j[Q(l)]−1M)modM

∣

∣

∣

∣

∣

≤ inf
j∈S

∣

∣

∣(i[Q(l)]−1M)modM − (j[Q(l)]−1M)modM
∣

∣

∣+
M

2K

=
M

2K

≤ σ

√

log

(

1

δ

)

by assumption. By Lemma 5, this implies that

|φ[(i[Q]−1
M

modM) K
M]MK

(Q(l))| ≥ δ µ

and since this is true regardless of the value of the random variable Q(l), we conclude that it holds almost
surely.

Remark 1. A careful study of the proof of Lemma 5 and Proposition 5 shows that the order O
(

R
√

log(R)
)

size of K arises from the need to bound quantities of the form
∑

j∈S e
−(

nM
K

−j)
2

σ2 . In the worst-case scenario
(the case treated by Lemma 5), this requires estimates of the form of Eq.(16), Eq.(17) and Eq.(22) which
introduce an extra

√

log(R) factor in the computational cost (Section 3) relative to the (conjectured) optimal
scaling. However, throughout the algorithm the elements of any aliased support Sk appearing in the sum
are always subject to random shuffling first. Lemma 4 states that the shuffling tends to be more of less
uniform. Now, were the elements i.i.d. uniformly distributed, it would be easy to show that these quantities
are of order O(1) with high probability, removing the need for the extraneous factor. Unfortunately, our
current theoretical apparatus does not allow us to prove the latter. However, following this argument and
numerical experiments, we strongly believe that it is possible. In this sense, we believe that through a
slight modification of the choice of parameters, our algorithm exhibits an (optimal) O (R log(R) log(N))
computational complexity with the same guarantees of correctness as the current scheme.

Lemma 6. Let {P (t)}Tt=1 be prime numbers greater than or equal to R ∈ N, and let i, j ∈ {0, 1, ..., N − 1}
such that,

imodP (t) = jmodP (t), t = 1, 2, ..., T.

If T > logR(N), then i = j.

Proof. Consider {P (t)}Tt=1 as described above and T > logR(N), and assume that

iQ(t) modP (t) = jQ(t) modP (t)

for t = 0, 1, ..., T . Since Q(t) ⊥ P (t) this is an isomorphism (Lemma 2) and therefore the above statement is
equivalent to

imodP (t) = jmodP (t)

for t = 0, 1, ..., T . This implies in particular that

P (t) | (j − i)

for t = 0, 1, ..., T , and that
lcm({P (t)}Tt=1) | (j − i).

18

However, since the integers {P (t)}Tt=1 are prime (and therefore coprime),

lcm(P (t)) =

T
∏

t=1

P (t) ≥
(

min
t
P (t)

)T

≥ RlogR(N) = N.

This implies that,
|j − i| ≥ N,

since i 6= j, and this is a contradiction since both belong to {0, 1, ..., N − 1}.

Corollary 2. Let {P (t)}Tt=1 are as in Lemma 6 and that i 6= j, k 6= l, i, j, k, l ∈ {0, 1, ..., N − 1} are such
that,

imodP (t) = jmodP (t)

kmodP (t) = lmodP (t)

for t = 1, 2, ..., T . Then,
(i− j) = (k − l)

Proof. The statement is equivalent to,

(i− j)modP (t) = 0 = (k − l)modP (t)

for t = 1, 2, ...T . By Lemma 6, this implies that (j − i) = (k − l).

Proposition 6. Let 0 < R < N ∈ N. Further let {P (t)} be random integers uniformly distributed within the
set P containing the 4R logR(N) smallest prime numbers strictly larger than R, and let F and B be defined
as in Eq.(10) with these parameters. If T ≥ 4, then,

P

(∣

∣

∣

∣

∣

∣

∣

∣

(I − 1

T
(FB)∗(FB))x

∣

∣

∣

∣

∣

∣

∣

∣

2

>
1

2

)

≤ 1

2

Proof. First, note that,
(FB)∗(FB) = B∗F ∗FB = B∗B

since F is a block-diagonal Fourier matrix, and I − 1
T B
∗B has entries

[

I − 1

T
B(t)∗B(t)

]

ij

= δi,j −
1

T

∑

s

B
(t)
si B

(t)
sj =

{

1
T if i[Q(t)]−1

P (t) modP (t) = j[Q(t)]−1
P (t) modP (t)

0 o.w.
(25)

Therefore, for any vector x such that ||x||2 = 1,

P

(∣

∣

∣

∣

∣

∣

∣

∣

(I − 1

T
(FB)∗(FB))x

∣

∣

∣

∣

∣

∣

∣

∣

2

>
1

2

)

≤ 4E











∑

i6=j

∑

t

x̄i [B
(t)∗B(t)]ij xj





2






= 4
∑

i6=j

∑

k 6=l

x̄i xj xk x̄l
∑

s,t

E

[

[B(t)∗B(t)]ij [B
(s)∗B(s)]kl

]

by Chebyshev inequality. Furthermore, thanks to Eq.(25) and independence, the expectation can be written
as,

E

[

[B(t)∗B(t)]ij [B
(s)∗B(s)]kl

]

=

{

P
({

(i− j)modP (t) = 0
})

P
({

(k − l)modP (t) = 0
})

if s 6= t

P
({

(i− j)modP (t) = 0
}

∩
{

(k − l)modP (t) = 0
})

if s = t
(26)

Now, let τ(i, j) be defined as

τ(i, j) :=
{

P (t) ∈ P : imodP (t) = jmodP (t)
}

.

19

The case s 6= t is treated as follows,

P

({

(i − j)modP (t) = 0
})

P

({

(k − l)modP (s) = 0
})

=





∑

p1∈τ(i,j)
P

({

(i− j)modP (t) = 0
}∣

∣

∣P (t) = p1

)

P

(

P (t) = p1

)



 ·





∑

p2∈τ(k,l)
P

({

(k − l)modP (s) = 0
}∣

∣

∣
P (s) = p2

)

P

(

P (s) = p2

)





≤
(

#τ(i, j)

4R logR(N)

#τ(k, l)

4R logR(N)

)

≤ 1

16R2

since P (t) is uniformly distributed within a set of cardinality 4R logR(N), and because,

∑

p1∈τ(i,j)
P

({

(i− j)modP (t) = 0
}∣

∣

∣P (s) = p1

)

= #τ(i, j) = logR(N)

by Lemma 6. This leaves us the case s = t. To this purpose, we further split this case into two subcases:
that when i− j = k − l and that when i− j 6= k − l. When i− j = k − l we obtain,

T
∑

s,t=1

P

(

{s = t} ∩ {i− j = k − l} ∩
{

(i− j)modP (t) = 0
}

∩
{

(k − l)modP (s) = 0
})

=
∑

p∈τ(k,l)
P

({

(k − l)modP (t) = 0
}∣

∣

∣P (t) = p
)

P

(

P (t) = p
)

≤ 1

4R

since k 6= l, following an argument similar to the previous one. This leaves the case s = t, i − j 6= k − l.
However, thanks to Corollary 2 it follows that the set,

{s = t} ∩ {i 6= j} ∩ {k 6= l} ∩ {i− j 6= k − l} ∩
{

(i− j)modP (t) = 0
}

∩
{

(k − l)modP (s) = 0
}

must be empty. Putting everything together we find that,

P

(∣

∣

∣

∣

∣

∣

∣

∣

(I − 1

T
(FB)∗(FB))x

∣

∣

∣

∣

∣

∣

∣

∣

2

>
1

2

)

≤ 4
∑

i6=j

∑

k 6=l

x̄i xj xk x̄l
1

T 2

[

T
∑

s,t=1

(

E

[

Is6=t(s, t) [B
(t)∗B(t)]ij [B

(s)∗B(s)]kl

]

+

E

[

Is=t(s, t) Ii−j=k−l(i, j, k, l) [B
(t)∗B(t)]ij [B

(s)∗B(s)]kl

])]

≤ 4

(

1

16R2

)





∑

k 6=l

x̄l xk





2

+
4

T

(

1

4R

)





∑

k 6=l

x̄l xk









∑

j

x̄j+k−l xj





We further note that
∑

i6=j x̄l xk is a bilinear form bounded by the norm of an R×R matrix with all entries
equal to 1 except the diagonal which is all zeros. It is easy to work out this norm which is equal to R− 1 so
that,

1

R

∑

k 6=l

x̄l xk < 1

20

Finally, by Cauchy-Schwartz inequality,

∣

∣

∣

∣

∣

∣

∑

j

x̄j+k−l xj

∣

∣

∣

∣

∣

∣

≤
√

∑

j

|xj+k−l|2
√

∑

j

|xj |2 = ||x||22 = 1.

Thus,

P

(∣

∣

∣

∣

∣

∣

∣

∣

(I − 1

T
(FB)∗(FB))x

∣

∣

∣

∣

∣

∣

∣

∣

2

>
1

2

)

<
1

4
+

1

T
≤ 1

2

as claimed.

Corollary 3. Under the hypotheses of Proposition 6, the solution to the linear system

FB f̂ = f0

takes the form,

f̂ =

∞
∑

n=0

[

I − 1

T
B∗B

]n (
1√
T
(FB)∗f0

)

with probability at least 1
2 .

Proof. By Proposition 6, ||I − 1
T (FB)∗(FB)||2 < 1

2 with probability at least 1
2 . When this is the case we

write,

FB f̂ = f0 ⇔ 1

T
B∗B f̂ =

1√
T
B∗F ∗f0 ⇔

[

I −
(

I − 1

T
B∗B

)]

f̂ =
1√
T
(FM)∗b = f̂0

In this case, it is easy to verify that the Neumann series,

f̂ =
∞
∑

n=0

[

I − 1

T
B∗B

]n (
1√
T
(FB)∗b

)

satisfies this last equation, and that the sum converges exponentially fast.

Proposition 3. (Correctness of Algorithm 4) Assume the support S of f̂ is known. Then Algorithm

4 outputs an approximation to the nonzero elements of f̂ with error bounded by η in the ℓ2-norm, with
probability greater than or equal to 1− p.

Proof. By Proposition 6, 1
T (FB)(FB)∗ = I − P where

∣

∣

∣

∣I − 1
T (FB)(FB)∗

∣

∣

∣

∣

2
= ||P||2 < 1

2 with probability

larger than 1
2 . Thus, if we consider O(log 1

2
(p)) independent realizations of FB, the probability that at least

one of them is such is greater than or equal to (1− p). When this occur, Corollary 3 states that the solution
is given by the Neumann series. Furthermore,

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f̂ −

⌈

log 1
2
(η)

⌉

∑

n=0

Pn f †

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞
∑

⌈

log 1
2
(η)

⌉

Pn f †

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

≤
∞
∑

⌈

log 1
2
(η)

⌉

||P||n2 ||f †||2

≤ O(η)

by the geometric series and the bound ||P||2 ≤ 1
2 .

21

A.2 Proofs of Section 3.3

Lemma 1. Assuming the noise term ν̂ is such that ||ν̂||2 < η√
N
, the error term of the computed value in

Eq.(11) is uniformly bounded by

∣

∣

∣

∣

∣

∣ψ(k)
n (Q)

∣

∣

∣

∣

∣

∣

∞
=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

Mk

∑

m∈A(K,Mk)

e2πi
nm
K gσ

(

m

Mk

)

ν(mQ) modMk;Mk

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞

< O(η).

Proof. First, not that since ΠQ(·) is an isomorphic permutation operator (for all Q ∈ Q(Mk)) one has

||ΠQ||∞ = 1.

Similarly, since the filtering operator Ψσ(·) is diagonal with nonzero entries ĝσ(n), then

||Ψσ||∞ = sup
m∈{0,1,...,Mk−1}

∣

∣

∣

∣

ĝσ

(

m

Mk

)∣

∣

∣

∣

≤
√
π σ =

√
παMk

2R
√

log
(

2R∆
δ

)

.

Finally, we get from the triangle inequality that,

≤ #A(K;Mk)

Mk
||Ψσ||∞ ||ΠQ||∞ ||ν||∞ ≤

√
παK

R
√

log
(

2R∆
δ

)

||ν||∞

≤
√
παK

R
√

log
(

2R∆
δ

)

||ν̂||1

by the Hausdorff-Young inequality [4]. Finally, we note that: ||ν̂||1 ≤
√
N ||ν̂||2 < η by assumption, and

recall that K = O(R
√

log(R)). This leads to the desired result.

A.3 Proof of Section 4

Proposition 4. (Rank-1 d-dimensional DFT) Assume the function f : [0, 1)d → C has form (12). Then,

∫

[0,1]d
e−2πi j·x f(x) dx =

1

N

N−1
∑

n=0

e−2πi j·xn f(xn) (13)

for all j ∈ [0,M)d ∩ Zd, where xn = ngmodN
N , g = (1,M,M2, ...,Md−1) and N =Md.

Proof. First, note that
∫

[0,1]d
e−2πi j·x f(x) dx = f̂j.

Then, substitute the samples in the quadrature to obtain

1

N

N−1
∑

n=0

e−2πi j·xn f(xn) =
1

N

N−1
∑

n=0

e−2πi j·
ng modN

N





∑

k∈[0,M)d∩Zd

f̂k e
2πi k·ng modN

N





=
∑

k∈[0,M)d∩Zd

f̂k

(

1

N

N−1
∑

n=0

e−2πi
n((k−j)·g)

N

)

since e2πi (k−j)·
ng modN

N = e2πi (k−j)·
ng
N . Note however that

1

N

N−1
∑

n=0

e−2πi
n((k−j)·g)

N = DN ((k − j) · g) ,

22

which is the Dirichlet kernel and is equal to 0 unless (k − j) · g = 0modN , in which case it is equal to 1.
Thus,

1

N

N−1
∑

n=0

f(xn) = f̂j +
∑

k∈[0,M)d∩Zd

(k−j)·gmodN≡0
(k−j)·g 6=0

f̂k.

Thus, in order to show that the quadrature is exact, it suffices to show that the remaining sum on the
right-hand side of the previous equation is trivial. To see this, note that (k − j) ∈ [−M,M)d ∩ Zd and
consider

|(k − j) · g| =
∣

∣(k1 − j1) + (k2 − j2)M + ...+ (kd − jd)M
d−1∣
∣ ≤M

d−1
∑

l=0

M l =M
1−Md

1−M
<Md = N,

where the inequality is strict for any finite M ∈ N strictly larger than 1. This implies that there cannot be
any (k − j) other than 0 in the domain of interest such that (k − j) · gmodN ≡ 0. The sum is therefore
empty and the result follows.

B Generalization to general complex sparse vectors

This appendix provides a terse description of the additional steps necessary to transform the sMFFT for
real positive vectors into a reliable algorithm for general complex vectors. To achieve this task, two major
hurdles, both associated with the support-recovery portion of the scheme, must be overcome; the first one
is associated with the initial aliasing of the signal described in Section 3. As shown Eq.(4), at each step
aliasing implies Fourier coefficients of the form,

f̂
(k)
l =

∑

j:j modMk=l

f̂j , l = 0, 1, ...,Mk.

When the original nonzero coefficients are all strictly positive, this expression is positive if and only if the
lattice l + iMk, i = 0, 1, ... N

Mk
− 1 contains one of the original nonzero coefficients. When the nonzero

coefficients are complex however, this is no longer true. The second potential issue pertains to the resulting
filtering step found in Algorithm 3. As described by Eq.(7), the result takes the form,

[Ψσ (ΠQ (fn;Mk
))] (ξ) = F∗





∑

j∈Sk
f̂
(k)
j e−

∣

∣

∣

∣

x−

(

j[Q]
−1
Mk

modMk

)∣

∣

∣

∣

2

σ2



 (ξ).

which corresponds to the Fourier transform of the aliased signal convoluted with a Gaussian. Once again,
the crucial statistical test used in Algorithm 3 relies on this quantity being positive if and only if a point lies
in the vicinity of an element of the (shuffled and aliased) support Sk. Such statement does not hold true if
we allow the coefficients to be general complex numbers (as some elements might cancels out).

The conclusion of these observations is that as a consequence of the lack of positivity, it is possible
that elements belonging to Mk ∩ Sk might be wrongfully eliminated in Algorithm 3, i.e., the false negative
identification rate is nontrivial. To alleviate these issues, we propose a slight modification to the scheme;
we allow for the possibility of the output of Algorithm 3 be missing elements of Sk by launching multiple
independent runs of the FIND SUPPORT(·) routine in Algorithm 1, and taking the union of the outputs.
In this sense, although it is possible to miss an element with a single run, we expect that the probability of
a miss over multiple independent run is very small. In addition, this modification does not have any effect
on the fundamental computational complexity; indeed, close examination shows that these additional steps
only increase the algorithmic constant by some small quantity independent of N and/or R.

So far, this modification remains a heuristic (with some preliminary/unpublished theoretical backing).
Note however that we have implemented it and can attest to excellent numerical results in line with our
expectation based on the previous discussion, and very similar to those obtained in the real-positive case.

23

References

[1] Adi Akavia. Deterministic sparse Fourier approximation via fooling arithmetic progressions. In COLT,
pages 381–393, 2010.

[2] Adi Akavia. Deterministic sparse Fourier approximation via approximating arithmetic progressions.
Information Theory, IEEE Transactions on, 60(3):1733–1741, 2014.

[3] Adi Akavia, Shafi Goldwasser, and Shmuel Safra. Proving hard-core predicates using list decoding. In
FOCS, volume 44, pages 146–159, 2003.

[4] William Beckner. Inequalities in Fourier analysis. Annals of Mathematics, pages 159–182, 1975.

[5] Petros Boufounos, Volkan Cevher, Anna C Gilbert, Yi Li, and Martin J Strauss. What’s the frequency,
Kenneth?: Sublinear Fourier sampling off the grid. In Approximation, Randomization, and Combina-
torial Optimization. Algorithms and Techniques, pages 61–72. Springer, 2012.

[6] Seok-Ho Chang, Pamela C Cosman, and Laurence B Milstein. Chernoff-type bounds for the gaussian
error function. IEEE Transactions on Communications, 59(11):2939–2944, 2011.

[7] Eleanor Chu and Alan George. Inside the FFT black box: serial and parallel Fast Fourier Transform
algorithms. CRC Press, 1999.

[8] James W. Cooley and John W. Tukey. An algorithm for the machine calculation of complex Fourier
series. Mathematics of computation, 19(90):297–301, 1965.

[9] Tom Darden, Darrin York, and Lee Pedersen. Particle mesh ewald: An nlog(n) method for ewald sums
in large systems. The Journal of chemical physics, 98(12):10089–10092, 1993.

[10] Matteo Frigo and Steven G Johnson. FFTW: An adaptive software architecture for the FFT. In
Acoustics, Speech and Signal Processing, 1998. Proceedings of the 1998 IEEE International Conference
on, volume 3, pages 1381–1384. IEEE, 1998.

[11] Badih Ghazi, Haitham Hassanieh, Piotr Indyk, Dina Katabi, Erik Price, and Lixin Shi. Sample-optimal
average-case sparse Fourier Transform in two dimensions. In Communication, Control, and Computing
(Allerton), 2013 51st Annual Allerton Conference on, pages 1258–1265. IEEE, 2013.

[12] Anna C. Gilbert, Sudipto Guha, Piotr Indyk, S Muthukrishnan, and Martin Strauss. Near-optimal
sparse Fourier representations via sampling. In Proceedings of the Thiry-Fourth Annual ACM Sympo-
sium on Theory of Computing, pages 152–161. ACM, 2002.

[13] Anna C Gilbert, S Muthukrishnan, and Martin Strauss. Improved time bounds for near-optimal sparse
Fourier representations. In Optics & Photonics 2005, pages 59141A–59141A. International Society for
Optics and Photonics, 2005.

[14] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions. In Proceedings
of the twenty-first annual ACM symposium on Theory of computing, pages 25–32. ACM, 1989.

[15] Haitham Hassanieh, Piotr Indyk, Dina Katabi, and Eric Price. Nearly optimal sparse Fourier Transform.
In Proceedings of the Forty-Fourth Annual ACM Symposium on Theory of Computing, pages 563–578.
ACM, 2012.

[16] Haitham Hassanieh, Piotr Indyk, Dina Katabi, and Eric Price. Simple and practical algorithm for sparse
Fourier Transform. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 1183–1194. SIAM, 2012.

[17] Piotr Indyk and Michael Kapralov. Sample-optimal Fourier sampling in any constant dimension. In
Foundations of Computer Science (FOCS), 2014 IEEE 55th Annual Symposium on, pages 514–523.
IEEE, 2014.

24

[18] Piotr Indyk and Michael Kapralov. Sparse Fourier transform in any constant dimension with nearly-
optimal sample complexity in sublinear time. 2014.

[19] Piotr Indyk, Michael Kapralov, and Eric Price. (nearly) sample-optimal sparse Fourier Transform. In
Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 480–499.
SIAM, 2014.

[20] Mark A Iwen. Combinatorial sublinear-time Fourier algorithms. Foundations of Computational Math-
ematics, 10(3):303–338, 2010.

[21] Mark A Iwen. Improved approximation guarantees for sublinear-time Fourier algorithms. Applied And
Computational Harmonic Analysis, 34(1):57–82, 2013.

[22] Michael Kapralov. Sparse fourier transform in any constant dimension with nearly-optimal sample
complexity in sublinear time. arXiv preprint arXiv:1604.00845, 2016.

[23] Eyal Kushilevitz and Yishay Mansour. Learning decision trees using the Fourier spectrum. SIAM
Journal on Computing, 22(6):1331–1348, 1993.

[24] David Lawlor, Yang Wang, and Andrew Christlieb. Adaptive sub-linear time Fourier algorithms. Ad-
vances in Adaptive Data Analysis, 5(01):1350003, 2013.

[25] Pierre-David Letourneau, Harper Langston, and Richard Lethin. A sparse multi-dimensional fast Fourier
transform with stability to noise in the context of image processing and change detection. In Proceedings
of the 2016 IEEE High Performance Extreme Computing Conference (HPEC). IEEE, to appear.

[26] Juan M Lopez-Sanchez and Joaquim Fortuny-Guasch. 3-D radar imaging using range migration tech-
niques. Antennas and Propagation, IEEE Transactions on, 48(5):728–737, 2000.

[27] Stéphane Mallat. A wavelet tour of signal processing. Academic press, 1999.

[28] Yishay Mansour. Randomized interpolation and approximation of sparse polynomials. SIAM Journal
on Computing, 24(2):357–368, 1995.

[29] Louis Joel Mordell. Diophantine equations. Elsevier, 1969.

[30] Jacques Morgenstern. Note on a lower bound on the linear complexity of the Fast Fourier Transform.
Journal of the ACM (JACM), 20(2):305–306, 1973.

[31] Frank Ong, Sameer Pawar, and Kannan Ramchandran. Fast and efficient sparse 2d discrete fourier
transform using sparse-graph codes. arXiv preprint arXiv:1509.05849, 2015.

[32] Sanjay Pawar and Kannan Ramchandran. Computing a k-sparse n-length discrete Fourier Transform
using at most 4k samples and o (k log k) complexity. In Information Theory Proceedings (ISIT), 2013
IEEE International Symposium on, pages 464–468. IEEE, 2013.

[33] Gerlind Plonka and Katrin Wannenwetsch. Deterministic sparse FFT algorithms. PAMM, 15(1):667–
668, 2015.

[34] Gerlind Plonka and Katrin Wannenwetsch. A sparse fast Fourier algorithm for real nonnegative vectors.
arXiv preprint arXiv:1602.05444, 2016.

[35] Paulo Ribenboim. The book of prime number records. Springer Science & Business Media, 2012.

[36] Charles Van Loan. Computational frameworks for the Fast Fourier Transform, volume 10. Siam, 1992.

25

	1 Introduction
	2 Notation and description of the problem
	3 A sparse FFT in 1D
	3.1 Rapid recovery of Sk from knowledge of Mk.
	3.2 Recovering values from knowledge of the support
	3.3 Stability

	4 The multi-dimensional sparse FFT
	5 Numerical results
	6 Conclusion
	A Proofs
	A.1 Proofs of Section ??
	A.2 Proofs of Section ??
	A.3 Proof of Section ??

	B Generalization to general complex sparse vectors

