
Memory-efficient Parallel Tensor Decompositions
Muthu Baskaran, Tom Henretty, Benoit Pradelle,

M. Harper Langston, David Bruns-Smith, James Ezick, Richard Lethin
Reservoir Labs Inc.

New York, NY 10012
Email: {baskaran,henretty,pradelle,langston,bruns-smith,ezick,lethin}@reservoir.com

Abstract—Tensor decompositions are a powerful technique for
enabling comprehensive and complete analysis of real-world data.
Data analysis through tensor decompositions involves intensive
computations over large-scale irregular sparse data. Optimizing
the execution of such data intensive computations is key to re-
ducing the time-to-solution (or response time) in real-world data
analysis applications. As high-performance computing (HPC)
systems are increasingly used for data analysis applications, it is
becoming increasingly important to optimize sparse tensor com-
putations and execute them efficiently on modern and advanced
HPC systems. In addition to utilizing the large processing capabil-
ity of HPC systems, it is crucial to improve memory performance
(memory usage, communication, synchronization, memory reuse,
and data locality) in HPC systems. In this paper, we present
multiple optimizations that are targeted towards faster and
memory-efficient execution of large-scale tensor analysis on HPC
systems. We demonstrate that our techniques achieve reduction
in memory usage and execution time of tensor decomposition
methods when they are applied on multiple datasets of varied
size and structure from different application domains. We achieve
up to 11x reduction in memory usage and up to 7x improvement
in performance. More importantly, we enable the application of
large tensor decompositions on some important datasets on a
multi-core system that would not have been feasible without our
optimization.

I. INTRODUCTION

Tensors, or multi-dimensional arrays, are a natural way
of representing multi-aspect data. Tensor decompositions are
increasingly becoming prominent as a powerful technique for
extracting and explaining the semantic properties of data in
real-world data analysis applications. Tensor decompositions
have applications in a range of domains such as cybersecu-
rity, geospatial intelligence, bioinformatics (e.g. genomics),
finance, scientific computing, social network analysis, rec-
ommendation systems, and many others. Kolda et al. have
published a survey on various tensor decompositions and their
applications [1].

Data analysis through tensor decompositions involves in-
tensive computations over large-scale irregular sparse data.
Optimizing the execution of such data intensive computations
is key to reducing the time-to-solution (or response time) in
real-world data analysis applications. Additionally, the volume
of data processed in critical applications is growing in size.
This growth is adding complexity with respect to quicker
turnaround and feasibility to handle large data, in data analysis.

As HPC systems are increasingly used for data analysis
applications, it is becoming increasingly important to optimize
sparse tensor computations and execute them efficiently on

modern and advanced HPC systems such as multi-core, many-
core, and future deep memory hierarchy exascale systems. In
addition to utilizing the large processing capability of HPC
systems, it is crucial to improve memory performance (mem-
ory usage, communication, synchronization, memory reuse,
and data locality) in HPC systems.

In this paper, we present multiple optimizations for sparse
tensor computations that are targeted towards faster and
memory-efficient execution on HPC systems. We present a
technique to significantly reduce memory usage in tensor de-
compositions through rematerialization of computations. This
optimization is key to applying tensor decompositions for large
problems that would be otherwise infeasible on an HPC multi-
core system. We also present an approach for performing
operation- and memory-efficient sparse tensor computations
that broadly applies to three different CP tensor decomposition
methods. Our approach exploits the redundancy in the non-
zero structure of sparse tensors and reuses partial results
in tensor computations with insignificant memory overhead.
Further, we introduce an optimization that fuses sparse tensor
and matrix operations and enables increased thread-local com-
putations, reduced synchronizations (and communications),
and improved data locality and reuse.

Overall, we make the following contributions in this paper:

1) Algorithmic improvements to three different widely ap-
plicable CP tensor decomposition methods (and not just
one particular method that is not necessarily useful for
all applications) to increase the feasibility and breadth
of application of tensor analysis

2) Improvements to reduce memory usage, synchroniza-
tions, and execution time of tensor decomposition meth-
ods, and enable the use of powerful tensor decomposi-
tion methods in critical real-world applications across
multiple domains

3) Demonstrate how our improvements benefit tensor anal-
ysis of datasets from cybersecurity, geospatial intel-
ligence, bioinformatics, Natural Language Processing
(NLP), and social network domains.

We integrate the optimizations presented in this paper into
ENSIGN [2], a commercially available tensor decomposition
package containing high-performance C implementations of
a variety of tensor decomposition methods. ENSIGN tensor
methods are implemented using optimized sparse tensor data
structures, namely, mode-specific sparse (MSS) tensor and

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

Patent Pending

Fig. 1. CP decomposition

mode-generic sparse (MGS) tensor data structures [3], and
are parallelized and optimized for load balancing and data
locality [3], [4], [5], [6]. The data structures used in ENSIGN
provide a foundation for a broad range of decomposition
methods and tensor sizes, and are not specifically optimized
for any particular method. In this work, we make use of
the MSS and MGS data structures in our optimized tensor
decompositions, and build on top of the optimizations that are
already implemented with the tensor methods.

II. BACKGROUND

In this section, we give some background information that
will help to understand our techniques and experimental study
in this work. We discuss the basic definitions and algorithms
for tensor decompositions.

A tensor is a multi-dimensional array and the order of a
tensor is the number of dimensions, also called modes, of
the tensor. A tensor can be transformed into a matrix (i.e.
matricized) by flattening it along any of its modes. The mode-
n matricized form of X is denoted by X(n).

There are two popular and prominent tensor decomposition
models, namely, CANDECOMP/PARAFAC (CP) and Tucker
decompositions. We will focus our discussion in this paper
to CP decomposition, especially, three CP decomposition
algorithms that are useful in real applications.

The CP decomposition decomposes a tensor into a sum of
component rank-one tensors (a N-way tensor is called a rank-
one tensor if it can be expressed as an outer product of N
vectors). This is illustrated in Figure 1. The CP decomposition
that factorizes an input tensor X of size I1 × · · · × IN into
R components (with factor matrices A(1) . . .A(N) and weight
vector λ) is of the form: X =

∑R
r=1 λra(1)r ◦ · · · ◦ a(N)

r where
a(n)r represents the rth column of the factor matrix A(n) of
size In ×R.

a) CP-ALS Algorithm: The widely used workhorse al-
gorithm for CP decomposition is the alternating least squares
(ALS) method (presented in Algorithm 1).

b) CP-ALS-NN Algorithm: The algorithm for non-
negative (NN) CP-ALS decomposition using multiplicative
updates [7] is similar to Algorithm 1, but differs only in the
way the factor matrices are updated at each step (Line 6). Line
6 of CP-ALS-NN algorithm looks like:

A(n) = A(n) ∗ U
A(n)V

c) CP-APR Algorithm: Chi and Kolda [8] have devel-
oped an Alternate Poisson Regression (APR) fitting algorithm

Algorithm 1 CP-ALS Algorithm

1: initialize A(1) . . .A(N)

2: repeat
3: for n = 1 . . . N do
4: V = ∗m6=nA(m)T A(m)

5: U = X(n)(�m6=nA(m))

6: A(n) = UV†

7: end for
8: until convergence

for non-negative CP tensor decomposition that is well-suited
for modeling and analyzing sparse count data. The CP-APR
algorithm described in [8] is presented in Algorithm 2.

Algorithm 2 CP-APR Algorithm

1: initialize A(1) . . .A(N)

2: repeat
3: for n = 1 . . . N do
4: Π = (�m6=nA(m))T

5: repeat
6: Φ = (X(n) � (A(n)Π))ΠT

7: A(n) = A(n) ∗Φ
8: until convergence
9: end for

10: until convergence

The sparse computations that we focus and that are compu-
tationally expensive in these algorithms are:

• Sparse matricized tensor times Khatri-Rao product (MT-
TKRP) computation in CP-ALS and CP-ALS-NN algo-
rithms: U = X(n)(�m6=nA(m))

• Sparse Khatri-Rao product (Π) computation in CP-APR
algorithm: Π = (�m6=nA(m))T

• Sparse Φ computation (a composite operation involv-
ing elementwise division, matrix multiplication, tensor
vector product) in CP-APR algorithm: Φ = (X(n) �
(A(n)Π))ΠT

In the sparse version of a Khatri-Rao product (KRP) of M
matrices (A(1), . . . ,A(M), the size of the nth matrix being
In × R, 1 ≤ n ≤ M), we need not compute all the ΠN

n=1In
rows, but only certain number of rows driven by the non-
zero structure (number of non-zeros, say P , and list of non-
zero indices) of a sparse tensor along which the KRP is used
in other computations in the decomposition method. Hence,
sparse KRP computation involves only a selected number of
rows, usually, one per non-zero of the sparse tensor involved
in the decomposition. Each row of the sparse KRP is given by
the elementwise product (also called the Hadamard product)
of the rows of the matrix selected by the index of the non-
zero. If the p-th non-zero index of the tensor is 〈i1, . . . , iM 〉,
then the p-th row of sparse KRP is given by:

Π(p, :) = A(1)(i1, :) ∗ · · · ∗ A(M)(iM , :)

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

III. RELATED WORK

There are several works that have focused on optimizing
sparse MTTKRP for shared- and distributed-memory systems.
However, we are not aware of any work on optimizing CP-
APR, other than our previous work [4]. In our previous work,
we presented a NUMA-aware low-overhead scheduler for load
balancing sparse tensor operations. The work presented in
this work is complementary to our previous work. Kolda et
al. develop and deliver a MATLAB Tensor Toolbox [9] that
provides a broad range of tensor decomposition methods, but
they cannot be used for HPC purposes. Plantenga and Kolda
provide a C++ based Tensor Toolbox [10], but the tensor
decomposition methods are not optimized for efficient parallel
execution. Ravindran et al. [11] presented an MTTKRP for-
mulation for three-mode tensors that achieves computational
savings but restricted to three modes. Smith et al. [12],
[13] provide a tool called SPLATT in which they have a
high-performance MPI+OpenMP implementation of CP-ALS
by optimizing sparse MTTKRP and other computations in
CP-ALS. SPLATT does not support CP-APR or CP-ALS-
NN. SPLATT uses a compressed sparse tensor data structure
called “compressed sparse fiber” (CSF) [14] to identify and
eliminate redundancies (using the sparsity pattern of tensors)
in MTTKRP computation. Choi et al. [15] (through their tool
DFacTo) and Kaya et al. [16] (through their tool HyperTensor)
provide a distributed-memory MPI version of CP-ALS, but
they also do not support CP-APR or CP-ALS-NN. Rolinger et
al. [17] performed an empirical evaluation of the performance
of CP-ALS implementation of the different tools, namely,
ENSIGN, SPLATT, and DFacTo, and presented the strengths
and areas of improvement of each tool.

IV. TECHNIQUES FOR IMPROVING SPARSE TENSOR
COMPUTATIONS

We present a detailed description of our approach in which
we develop multiple optimizations aimed at improving the
performance in terms of execution time and memory usage
of tensor decompositions.

For further discussion, assume that a sparse tensor that is
decomposed by the existing and optimized tensor decomposi-
tion methods (that we focus in this paper) has N modes and
P non-zero values. Let the size of the tensor be I1×· · ·×IN .
Let the tensor be decomposed into R components.

A. Selective rematerialization of sparse Khatri-Rao product

A critical challenge in scaling and applying the CP-APR
method for tensor analysis is addressing the memory blowup
problem. The matrix Π, storing the result of sparse KRP, that
is computed in Line 4 of Algorithm 2 is of size P ×R. Since
Π is reused in the “inner iterative loop” starting in Line 5 of
Algorithm 2, the existing state-of-the-art implementation of
CP-APR computes Π as a full P ×R matrix. If the tensor is
large (which typically means that P is large) or if the tensor
is decomposed into very high number of components (in other
words, if R is large), this adds a huge memory pressure or
makes it infeasible to perform the tensor decomposition.

Our solution to address this problem is to fold in the com-
putation of Π into the inner iterative loop and recompute the
rows of Π as they are needed in the computation of Φ (Line 6
of Algorithm 2). We call this “selective rematerialization” of
sparse KRP. As a result, in Algorithm 2, Line 4 is (removed
and) folded into Line 6, and Line 6 becomes:

Φ = (X(n) � (A(n)(� m6=nA(m))))(�m6=nA(m))T (1)

Selective rematerialization (or recomputation) of rows of
sparse KRP decreases memory pressure and memory usage
from O(PR) to O(P). However, it increases the amount of
computations that are performed in Φ computation. Com-
putation of Φ is the most computationally expensive step
(O(PR) for each inner iteration) in CP-APR and it becomes
even more expensive (O(PNR) for each inner iteration) with
rematerialization of Π. Section IV-B describes an optimization
in which we exploit the redundancy in the non-zero structure
(i.e. redundancy of tensor indices) of the sparse tensor and
optimize the unified computation of Π and Φ described in
Equation 1.

B. Exploiting the redundancy in non-zero structure of tensors

Sparse tensors are usually represented as a list of values
and multi-indices (called the “coordinate format” of sparse
tensors). There is a lot of redundancy in the tensor indices
since tensor entries have common sub-indices. For example,
if (〈1, 1, 1〉, 5.0) and (〈1, 1, 2〉, 5.2) are two tensor entries
in a sparse tensor, they have common sub-indices 〈1, 1〉 in
the first two modes. ENSIGN MSS and MGS sparse tensor
formats exploit this redundancy and provide a compressed
tensor storage. We now discuss how we exploit the redundancy
in non-zero structure (along with ENSIGN MGS and MSS
data structures) and eliminate redundant computations through
reuse of partial results from common sub-expressions (with
insignificant memory overhead) in tensor decompositions,
especially, computations involving sparse KRP.

Recalling the discussion from Section II, we compute P
rows of sparse KRP corresponding to P non-zeros of the
sparse tensor and row p (1 ≤ p ≤ P) of sparse KRP is given
by the elementwise (Hadamard) product of the rows of the
matrix selected by the index of the p-th non-zero. We now
discuss how we perform the “computation-minimal” unified
and rematerialized Π and Φ computation in the modified CP-
APR algorithm.

Figure 2 illustrates our approach to eliminate redundant
computations in sparse KRP operation. We use N KRP buffers
each of size R, one corresponding to each mode. For large
tensors, the amount of computation savings achieved from
this optimization outweighs the O(NR) memory overhead
introduced for the buffers. With the ENSIGN MSS and
MGS tensor data structures, the indices are ordered such
that consecutive non-zeros have common sub-indices as much
as possible (with the indices diverging from the innermost
mode to the outermost mode along the list of non-zeros) as
illustrated in Figure 2. This enables reuse of partial results in
the computation of sparse KRP.

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

Fig. 2. Illustrative example describing our approach for efficient sparse KRP: Computations that are directly or indirectly driven by the tensor benefit from KRP
buffers that store partial KRP results. Tensor elements that share common sub-indices enable sharing and reuse of buffered partial KRP results corresponding
to the common sub-indices. This reduces computations and avoids accessing factor matrices that are irregularly accessed.

Algorithm 3 presents the computation-minimal unified com-
putation of Φ and Π (i.e. optimized version of Line 6 in
Algorithm 2 after it is modified as per Equation 1). It assumes
the following: S stores the indices of the sparse tensor, v
stores the values of the tensor, and K is the N × R KRP
buffer matrix. It reduces the complexity of computation from
O(PNR) for each inner iteration to O(PNrR) for each inner
iteration, where Nr = ψrN, 0 < ψr ≤ 1 and ψr represents the
redundancy factor inherent in the structure of the non-zero.

An important observation is that changing Line 7 to w = 1
in Algorithm 3 makes it computation-minimal sparse MT-
TKRP (i.e. optimized version of Line 5 in Algorithm 1) for
CP-ALS and CP-ALS-NN.

Algorithm 3 Unified and optimized Φ and Π computation for
mode n in CP-APR

1: b = 0
2: for p = 1 . . . P do

3: q =

{
diverging mode(S(p, :),S(p− 1, :)), if p > 1

1, if p = 1
4: for m = q . . . N do

5: K(m, :) =


A(m)(S(p,m), :), if m = 1 or

(m = n+ 1 and m 6= N)

K(m− 1, :) ∗ A(m)(S(p,m), :), else
6: end for

7: w =

{
K(n, :).K(N, :), if n 6= N

K(n, :).1R, if n = N
8: u = v(p)/w
9: if q ≤ n then

10: Φ(n, :)+ = b
11: b = 0
12: end if

13: b+ =


u ∗K(N, :), if n = 1

u ∗K(n− 1, :), if n = N

u ∗K(N, :) ∗K(n− 1, :), else
14: end for

C. Fusion of sparse tensor and matrix operations

It is extremely important to exploit the large processing
capability (improve concurrency and load balance) and mem-
ory hierarchy (increase accesses to faster memory and reduce
data movement) in modern and advanced HPC systems such
as multi-core, many-core, and deep hierarchy exascale sys-
tems. Towards this objective, we present a technique that (1)
increases thread-local computations and exploits parallelism,
(2) reduces synchronizations and communications, and (3)
improves data locality and reuse.

Our approach is to efficiently and carefully fuse the sparse
tensor and matrix operations such that a processing thread
performs more local computations and less synchronizations
(global or point-wise) and brings the consumption of results
of fused composite operations closer to their production.

In the CP-APR algorithm, we fold Line 4 into Line 6
(because of rematerialization described in Section IV-A) and
fuse Lines 6 (that is optimized as described in Section IV-B)
and 7 into one composite operation. Similarly, for CP-ALS
(and CP-ALS-NN), we fuse Lines 5 (that is optimized as
described in Section IV-B) and 6 in Algorithm 1 into one
composite operation.

Without the fusion of operations described in our approach,
each operation will be “individually” optimized and paral-
lelized (for example using OpenMP parallel construct), with
synchronizations between the individual parallelized opera-
tions. If the pattern of distribution of computations across
processor cores is different across the operations, then it would
also make the processing thread access non-local data resulting
from the previous operation.

V. EXPERIMENTAL RESULTS

We provide a detailed experimental study on the evaluation
of our techniques to improve the memory efficiency and paral-
lel performance and scalability of sparse tensor computations
on multi-core systems.

Datasets: We use multiple real datasets from different
application domains to evaluate the techniques described in
our work. Table I describes the datasets. These datasets are of

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

(a) Memory reduction (b) Performance improvement

Fig. 3. Performance efficiency of CP-APR on different datasets on 32 cores

(a) Memory reduction (b) Performance improvement

Fig. 4. Performance efficiency of CP-ALS on different datasets on 32 cores

Dataset NNZ Tensor Dimensions Domain
Cyber [18] 87M [10M, 9K, 71K, 40K] Cybersecurity
NYC-taxi [19] 2M [168, 15K, 38K] Geospatial
VAST [20] 26M [165K, 11K, 2, 100, 89] Geospatial
Flickr [21] 112M [319K, 28M, 1.6M, 731] Social network
Alzheimers [22] 6M [5, 1309, 156, 1047, 396] Bioinformatics
NELL [23] 76M [12K, 9K, 28K] NLP

TABLE I
DATASETS USED IN OUR EVALUATION

different size and non-zero structure. These datasets represent
a good mix of datasets that are being used by Reservoir
Labs for real critical analysis in the fields of cybersecurity
and bioinformatics (e.g. Cyber and Alzheimers datasets) and
datasets that are being used by the tensor community [24].
Different CP decomposition methods are suited for different
types of datasets and/or different domains and give qualita-
tively different results. In particular, we have seen CP-APR
to be very useful for analyzing sparse count data and hence
suited for cybersecurity and geospatial intelligence analysis.
For our experiments, we use a decomposition rank of 30 for
all datasets except NYC-taxi (rank of 100) and Cyber (rank
of 50) datasets.

Experimental system: We use a modern multi-core system
to evaluate our techniques. The system we use is a quad socket
8-core system with Intel Xeon E5-4620 2.2 GHz processors
(Intel Sandy Bridge microarchitecture chips). The system has
128 GB of DRAM.

Baseline and optimized versions for evaluation: The
baseline versions of CP-APR, CP-ALS, and CP-ALS-NN
methods are the latest “default” versions of these methods in
ENSIGN without the optimizations discussed in the paper. The
default versions in ENSIGN are highly optimized for paral-
lelism and locality as mentioned in Section I. The “optimized”
versions include the optimizations discussed in the paper such
as selective rematerialization of sparse KRP (for CP-APR),
exploitation of redundancy in non-zero structure, and fusion
of sparse tensor and matrix operations.

A. Memory efficiency

We characterize memory usage in the core computational
portion (i.e. the significant portion of execution) of the three
tensor decomposition methods. We measure maximum “resi-
dent set size” (RSS) to characterize memory usage. Figures
3(a), 4(a), and 5(a) show the memory usage by CP-APR,
CP-ALS, and CP-ALS-NN, respectively, on different datasets
when these methods are executed on 32 cores. The figures
clearly illustrate significant gains in terms of reduction in
memory usage achieved using our techniques.

The most beneficial method in terms of memory efficiency
is CP-APR due to selective rematerialization of sparse KRP.
The NYC-taxi dataset has a significant 11x reduction in
memory usage, while other datasets have a 3-5x reduction.
More importantly, without the memory-efficient optimization,
we would not have been able to apply CP-APR for datasets

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

(a) Memory reduction (b) Performance improvement

Fig. 5. Performance efficiency of CP-ALS-NN on different datasets on 32 cores

Fig. 6. Speedup of CP-APR, CP-ALS, and CP-ALS-NN optimized versions (and default versions — for comparison) on different datasets across 32 cores

such as Cyber and Flickr for a larger decomposition rank (rank
≥ 85 for Cyber and rank ≥ 65 for Flickr).

The memory usage characteristics of CP-ALS and CP-ALS-
NN are very similar, as they are similar algorithmically. The
memory reduction is between 20% and 70% for all datasets,
except VAST that has a 2x reduction.

B. Performance improvement

We characterize the performance of the three tensor de-
composition methods by measuring the overall execution time
of the methods (and not just the core computation kernels).
Figures 3(b), 4(b), and 5(b) show the performance improve-
ment in terms of reduced execution time achieved using our
techniques.

The NELL dataset has significant improvement (2x) across
all methods because the redundancy in non-zero structure
of the dataset is better exploited. For CP-APR, the NYC-
taxi geospatial dataset achieves 2.75x and the Cyber dataset
achieves 1.75x improved performance. The other datasets
achieve a 40-50% improvement. For CP-ALS and CP-ALS-
NN, the VAST dataset achieves significant improvement (3x
for ALS and 7x for ALS-NN). The other datasets achieve a
20-40% improvement.

Overall, the reduced memory pressure reduces cache misses
and processor stall cycles and leads to improved execution
time. Further, efficient sparse KRP computation also reduces
the number of computations (significantly, in some datasets)
and associated memory accesses and contributes to improved

execution. Also, the parallel performance and speedup are
improved due to reduced synchronizations and improved data
locality resulting from fusion of tensor-matrix operations.

C. Scalability

The optimized version achieves better speedup than the
default version in all methods across all datasets. Figure 6
shows the speedup (on a selected datasets-to-methods com-
bination) achieved by the default and optimized versions on
4, 8, 16, and 32 cores compared to 1 core. The selection is
based on the “practical” fit of the tensor decomposition method
on the dataset or application domain. We observe around 15-
16x speedup factor on 32 cores. The speedup improvement
of optimized versions compared to default versions is around
10-25% for all datasets except NYC-taxi and Flickr datasets
that show 2x improvement.

VI. CONCLUSION

In this paper, we have developed techniques that will enable
the use of powerful tensor decomposition methods in critical
real-world applications across multiple domains such as cyber-
security, geospatial intelligence, bioinformatics, NLP, and so-
cial network analysis. We have implemented high-performance
tensor decomposition methods that will scale well on modern
and advanced HPC systems. We are currently developing
communication-minimal distributed-memory implementations
of tensor decomposition methods using the memory-efficient,
synchronization-minimal, and parallelism-efficient techniques
presented in this paper.

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

REFERENCES

[1] T. G. Kolda and B. W. Bader, “Tensor Decompositions and Applica-
tions,” SIAM Review, vol. 51, no. 3, pp. 455–500, September 2009.

[2] R. Labs, “ENSIGN Tensor Toolbox.” [Online]. Available:
https://www.reservoir.com/support/ensign/

[3] M. Baskaran, B. Meister, N. Vasilache, and R. Lethin, “Efficient and
Scalable Computations with Sparse Tensors,” in IEEE High Performance
Extreme Computing Conference, Waltham, MA, Sep. 2012.

[4] M. Baskaran, B. Meister, and R. Lethin, “Low-overhead Load-balanced
Scheduling for Sparse Tensor Computations,” in IEEE High Performance
Extreme Computing Conference, Waltham, MA, Sep. 2014.

[5] M. M. Baskaran, B. Meister, and R. Lethin, “Parallelizing and Opti-
mizing Sparse Tensor Computations,” in Proceedings of the 28th ACM
International Conference on Supercomputing, ser. ICS ’14, 2014, pp.
179–179.

[6] J. Cai, M. Baskaran, B. Meister, and R. Lethin, “Optimization of
Symmetric Tensor Computations,” in IEEE High Performance Extreme
Computing Conference, Waltham, MA, Sep. 2015.

[7] D. Chen and R. J. Plemmons, “Nonnegativity constraints in numerical
analysis,” in Symposium on the Birth of Numerical Analysis, 2007.

[8] E. C. Chi and T. G. Kolda, “On Tensors, Sparsity, and Nonnegative
Factorizations,” arXiv:1304.4964 [math.NA], December 2011. [Online].
Available: http://arxiv.org/abs/1112.2414

[9] T. G. Kolda and B. Bader, “MATLAB Tensor Toolbox.” [Online].
Available: http://www.sandia.gov/t̃gkolda/TensorToolbox

[10] T. D. Plantenga and T. G. Kolda, “C++ Tensor Toolbox.” [Online]. Avail-
able: http://prod.sandia.gov/techlib/access-control.cgi/2012/123087.pdf

[11] N. Ravindran, N. D. Sidiropoulos, S. Smith, and G. Karypis, “Memory-
efficient parallel computation of tensor and matrix products for big
tensor decomposition,” in Asilomar Conference on Signals, Systems, and
Computers, 2014.

[12] S. Smith and G. Karypis, “A Medium-Grained Algorithm for Distributed
Sparse Tensor Factorization,” in Parallel and Distributed Processing
Symposium (IPDPS), 2016 IEEE International. IEEE, 2016.

[13] S. Smith, N. Ravindran, N. D. Sidiropoulos, and G. Karypis, “SPLATT:
Efficient and parallel sparse tensor-matrix multiplication,” in Parallel
and Distributed Processing Symposium (IPDPS), 2015 IEEE Interna-
tional. IEEE, 2015, pp. 61–70.

[14] S. Smith and G. Karypis, “Tensor-matrix products with a compressed
sparse tensor,” in Proceedings of the 5th Workshop on Irregular Appli-
cations: Architectures and Algorithms. ACM, 2015, p. 7.

[15] J. H. Choi and S. Vishwanathan, “DFacTo: Distributed factorization
of tensors,” in Advances in Neural Information Processing Systems
27, Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and
K. Q. Weinberger, Eds. Curran Associates, Inc., 2014, pp. 1296–1304.
[Online]. Available: http://papers.nips.cc/paper/5395-dfacto-distributed-
factorization-of-tensors.pdf

[16] O. Kaya and B. Uçar, “Scalable sparse tensor decompositions in
distributed memory systems,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, ser. SC ’15. New York, NY, USA: ACM, 2015, pp. 77:1–
77:11. [Online]. Available: http://doi.acm.org/10.1145/2807591.2807624

[17] T. B. Rolinger, T. A. Simon, and C. D. Krieger, “Performance Evaluation
of Parallel Sparse Tensor Decomposition Implementations,” in Proceed-
ings of the Sixth Workshop on Irregular Applications: Architectures and
Algorithms, 2016, pp. 54–57.

[18] R. Labs, “R-Scope Network Sensor.” [Online]. Available:
https://www.reservoir.com/product/r-scope/

[19] N. Taxi and L. Commission, “New york city taxi and
limousine commision (tlc) trip record data.” [Online]. Available:
http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml

[20] V. A. Community, “Vast challenge 2015 mini-challenge 1.” [Online].
Available: http://vacommunity.org/VAST+Challenge+2015

[21] O. Görlitz, S. Sizov, and S. Staab, “Pints: peer-to-peer infrastructure for
tagging systems.” in IPTPS, 2008, p. 19.

[22] B. Institute, “Connectivity map.” [Online]. Available:
https://portals.broadinstitute.org/cmap/

[23] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R.
Hruschka, Jr., and T. M. Mitchell, “Toward an architecture
for never-ending language learning,” in Proceedings of the
Twenty-Fourth AAAI Conference on Artificial Intelligence, ser.
AAAI’10. AAAI Press, 2010, pp. 1306–1313. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2898607.2898816

[24] S. Smith, J. W. Choi, J. Li, R. Vuduc, J. Park, X. Liu, and G. Karypis.
(2017) FROSTT: The formidable repository of open sparse tensors and
tools. [Online]. Available: http://frostt.io/

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

