
ON THE BOTTLENECK STRUCTURE OF POSITIVE LINEAR PROGRAMMING

Jordi Ros-Giralt (giralt@reservoir.com), Harper Langston, Aditya Gudibanda, Richard Lethin — Reservoir Labs

SIAM Workshop on Network Science 2019
May 22–23 · Snowbird

Summary

Positive linear programming (PLP), also known as pack-

ing and covering linear programs, are an important class

of problems frequently found in fields such as network

science, operations research, or economics. In this work

we demonstrate that all PLP problems can be represented

using a network structure, revealing new key insights that

lead to new polynomial time algorithms.

Problem Motivation

It is well-known that many traditional network problems—

e.g., max-flow, max-min or network utility maximization

[1]—can be solved using general linear programming (LP)

algorithms. In this essay, we show that the reverse is also

true for all positive LP problems [4]. For this class of

problems, each variable can be interpreted as a flow while

each inequality constraint corresponds to a bottleneck link

in the corresponding network. This approach reveals new

insights on the bottleneck structure of the optimization

problem that general approaches such as the simplex or

interior-point methods are not able to capture, which can

be exploited to design fast algorithms.

Solving PLP Problems Using Networks

A positive linear programming (PLP), also known as pack-

ing or covering LP, takes the form max{c>x : Ax ≤ b},
where c ∈ Rm

≥0, b ∈ Rn
≥0, and A ∈ Rm×n

≥0 . We illustrate

how to obtain the network representation of a PLP prob-

lem using the Klee-Minty cube as an example:

Example 1. Klee-Minty cube network structure. Assume

the 3-dimensional Klee-Minty Cube problem [3]: x ∈ R3 ,

c = [4, 2, 1], A = [1, 0, 0; 4, 1, 0; 8, 4, 1] and b = [5, 25, 125].

We construct an equivalent network with m = 3 flows

(paths in a graph) and n = 3 links (vertices in a graph) as

follows. Each variable xi, 1 ≤ i ≤ m, is represented as the

transmission rate of a flow that loops through a link lj ,

1 ≤ j ≤ n, as many times as the coefficient Aj,i indicates,

where each link lj has a capacity bj . Fig. 1 shows the

network structure of the 3-dimensional Klee-Minty Cube.

The original linear programming problem is equivalent

to identifying the set of flows {x1, x2, x3} in this network

such that c> · x is maximal.

Our key insight is that by using the network interpreta-

tion we can leverage well-known results on the bottleneck

structure of communication networks to design new incre-

mental paths within the polytope Ax ≤ b.

Figure 1: Klee-Minty cube network structure (m = n = 3).

Let N be a network constructed from a given PLP

problem as shown in Example 1. Assume N(∆) is an

extended network formed by adding a virtual link to each

flow xi with a capacity xi−∆i, where ∆ = [∆1, ...,∆m] and

∆i ≥ 0. (Note that by construction, N([0, ..., 0]) = N .) In

the field of communication networks such virtual links are

commonly referred as traffic shapers [1], since the value of

∆i enforces a reduction on the flow transmitted through

xi. A first main contribution of our work is given by the

following lemma:

Lemma 1. Incremental paths. Let xmm(N) ∈ Rm be

the max-min solution to network N (see [1]) and let x

be an arbitrary feasible solution of network N—i.e., an

element in the polytope of the corresponding PLP prob-

lem. If c> · x > c> · xmm(N) for some feasible x ∈ Rm,

then there exists a traffic shaper vector ∆ such that

c> · xmm(N(∆)) > c> · xmm(N).

We demonstrate that the traffic shapers introduced in

Lemma 1 provide incremental paths towards the opti-

mal solution. We denote the direction provided by these

incremental paths as flow gradients. Under the classic

theory of fairness (e.g., [2]), our approach can also be

interpreted as a method that travels within the set of

Pareto efficient solutions starting at a point that is fair

but highly costly, and then moving along the path of the

flow gradients to gradually sacrifice fairness until the cost

is minimized—thus maximizing c> · x.
We also demonstrate an efficient method to compute

flow gradients through a Pareto-efficient feasible path:

1



Lemma 2. Flow gradients. Using a generalization of

the constrained precedence graph introduced in [5]—which

we call the flow gradient graph—flow gradients can be

computed in polynomial time.

Leveraging the above two lemmas, the general structure

of our proposed algorithm—which we call the flow gradient

algorithm—is as follows:

1. Set N (0) = N , x(0) = xmm(N (0)), i = 1;

2. While ∆(i) 6= 0 on network N (i−1):

Set N (i) = N (i−1)(∆(i)), x(i) = xmm(N (i)), i = i+1;

Lemma 3. Complexity. The flow gradient graph con-

verges to the exact optimal solution in poly(m,n) steps.

Proofs of Lemma 1, 2 and 3. Omitted for the sake of

brevity, see our extended paper https://goo.gl/6gubJi.

Example 2. Solving the Klee-Minty cube. To construct

the flow gradient graph of a network, we extend the con-

straint precedence graph introduced in [5] in two ways:

(1) we include not only the bottleneck links but also the

flows as vertices in the graph and (2) we add weights in

each edge of the graph according to the coefficients of

the matrix A, revealing how the traffic shaping of a flow

affects the performance of the rest of the flows. Consider

Fig. 2 as an example, which illustrates the execution of

the proposed algorithm to resolve the Klee-Minty cube

in Example 1. Fig. 2-a presents the initial flow gradient

graph, showing that flows x1, x2 and x3 are bottlenecked

at links l1, l2, l3, respectively. In our work we show

that the bottleneck information provided by the graph

reduces the complexity of searching for incremental paths

to polynomial time. In the first step (Fig. 2-a), we have

c> · x0 = c> · xmm(N) = [4, 2, 1] · [5, 5, 65] = 95. The al-

gorithm finds a flow gradient by traffic shaping (reducing

the value of) flow x2 with a slope of 3, which we denote

as ∇x2(N) = 3. Applying this gradient takes us to the

graph in Fig. 2-b, with c> · x1 = c> · xmm(N([0, 5, 0])) =

[4, 2, 1] · [5, 0, 85] = 105. Next, in Fig. 2-c the algorithm

finds a flow gradient by traffic shaping flow x1 with a

slope of 7, ∇x1(N([0, 5, 0])) = 7. Applying this gradient

we obtain the graph in Fig. 2-d and a total value of

c> · x2 = c> · xmm(N([5, 5, 0])) = [4, 2, 1] · [0, 0, 125] = 125.

At this point we find no more flow gradients, thus conclud-

ing from Lemma 1 that the obtained solution x = [0, 0, 125]

is optimal. This is indeed the well-known solution of the

Klee-Minty cube for m = n = 3. Note that while general

purpose algorithms such as simplex would take 2D = 8

iterations to resolve this problem (as many as vertices),

by exploiting its bottleneck properties, the flow gradi-

ent algorithm resolves it in just 2 iterations. Fig. 3

presents the generalized bottleneck structure of the cube

for m = n = D.

Figure 2: Algorithm steps for Example 2.

Figure 3: Bottleneck structure of the Klee-Minty Cube.

Discussion

In our talk we will introduce in detail the flow gradient al-

gorithm and demonstrate its polynomial time performance

for positive linear programming problems.

References
[1] D. Bertsekas and R. Gallager. Data Networks (2Nd Ed.).

Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1992.

[2] D. Bertsimas, V. F. Farias, and N. Trichakis. The price of
fairness. Oper. Res., 59(1):17–31, Jan. 2011.

[3] V. Klee and G. J. Minty. How good is the simplex algorithm?
In O. Shisha, editor, Inequalities, volume III, pages 159–175.
Academic Press, New York, 1972.

[4] M. Luby and N. Nisan. A parallel approximation algorithm for
positive linear programming. In Proceedings of the Twenty-fifth
Annual ACM Symposium on Theory of Computing, STOC ’93,
pages 448–457, New York, NY, USA, 1993. ACM.

[5] J. Ros and W. K. Tsai. A lexicographic optimization framework
to the flow control problem. IEEE Transactions on Information
Theory, 56(6):2875–2886, June 2010.

2

https://goo.gl/6gubJi

	Problem Motivation
	Solving PLP Problems Using Networks
	Discussion

