
An Adaptive Fast Multipole Method-Based

PDE Solver in Three Dimensions

by

Matthew Harper Langston

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

Courant Institute of Mathematical Sciences

New York University

January 2012

Denis Zorin

c© Matthew Harper Langston

All Rights Reserved, 2012

To Victoria, the love of my life and the most important person in it.

iii

ACKNOWLEDGMENTS

I would like to thank all of the professors, colleagues, and friends, without whom, this would

not have been possible. First, my advisor, Denis Zorin for his constant help and advice over

these many years, Leslie Greengard, Mike Shelley, and George Biros for their invaluable advice

and encouragement. I also would like to acknowledge the Department of Energy CPES grant,

which helped support this work, including C.S. Chang, the researchers at the Princeton Plasma

Physics Laboratory and Oak Ridge National Laboratory. Additionally, I appreciate the support

of the New York University High Performance Computing group, on whose machines much of

this work was tested, debugged and run.

Many thanks to my colleagues, Adrian Secord, Elif Tosun, Evgeniy Parilov, Robb Bifano,

Will Casey, Yotam Gingold, Matt Grimes, Denis Kovacs, Jason Reisman, Chris Wu, Chris Poult-

ney, Ilya Rosenberg, Lexing Ying, Shravan Veerapaneni, Ilya Lashuk, Rahul Sampath, Abtin

Rahimian, and many others for their constant support.

To my family, especially my sister Marisa Simon Langston, my brother-in-law Mitchell

Simon, and my mother Judith Langston for being there when I needed. To my in-laws, Arthur

Lichtendorf and his wife Judith Lichtendorf for inviting me up to their apartment for late-night

sessions of good food and a relaxing environment; I only wish Arthur were still with us to help

celebrate the completion. To those who saw me enter this journey but are no longer with me to

see me finish, I wish you could be here for me to show my appreciation in everything you did

for me, especially Arthur, his first wife Susan, my grandparents Dorothy Bandy Melton, Eleanor

Floyd, and John Melton. I could have never done any of this without their support while they

were with me, and I definitely could not have done it without the strength of their memories.

I thank my son Max for helping me see what is most important in life when I was in the

iv

greatest states of despair. Most importantly, I thank my wife, Victoria Lichtendorf, for putting

up with these many years of late nights, strange schedules, and stress-filled sleepless nights.

Without your constant support, none of this would have ever been possible.

v

ABSTRACT

Many problems in scientific computing require the accurate and fast solution to a variety of ellip-

tic partial differential equations (PDEs). These problems become increasingly difficult in three

dimensions when forces become non-homogeneously distributed and geometries are complex.

We present an adaptive fast volume solver using a new version of the Fast Multipole Method

(FMM), incorporated with a pre-existing boundary integral formulation for the development of

an adaptive embedded boundary solver.

For the fast volume solver portion of the algorithm, we present a kernel-independent, adap-

tive fast multipole method of arbitrary order accuracy for solving elliptic PDEs in three di-

mensions with radiation boundary conditions. The algorithm requires only a Green’s function

evaluation routine for the governing equation and a representation of the source distribution

(the right-hand side) that can be evaluated at arbitrary points. The performance of the method

is accelerated in two ways. First, we construct a piecewise polynomial approximation of the

right-hand side and compute far-field expansions in the FMM from the coefficients of this ap-

proximation. Second, we precompute tables of quadratures to handle the near-field interactions

on adaptive octree data structures, keeping the total storage requirements low through the ex-

ploitation of symmetries. We additionally show how we extend the free-space volume solver to

solvers with periodic and homogeneous Dirichlet boundary conditions.

For adaptively solving PDEs with Dirichlet boundary conditions in complex geometries, we

incorporate the fast free-space volume solver into an exisiting embedded boundary approach,

developing interpolation methods to maintain the accuracy of the volume solver. These methods

use the existing FMM-based octree structure to locate appropriate interpolation points, building

polynomial approximations to this larger set of forces and evaluating these polynomials to the

vi

locally under-refined grid in the area of interest.

We present numerical examples for the Poisson, modified Helmholtz and Stokes equations

for a variety of boundary conditions and geometries as well as studies of the interpolation pro-

cedures and stability of far-field and polynomial constructions.

vii

TABLE OF CONTENTS

Dedication iii

Acknowledgments iv

Abstract vi

List of Figures xii

List of Tables xxxii

Introduction 1

1 Related Work 5

1.1 Fast-Fourier Based Solvers . 5

1.2 Structured and Unstructured Grid Methods . 11

1.3 Fast Direct Solvers . 16

1.3.1 Barnes-Hut Method . 17

1.3.2 Fast Multipole Methods . 22

1.3.3 Particle-In-Cell Methods . 24

1.4 Embedded Boundary Solvers . 27

1.5 Overview of Thesis . 27

2 FMM-Based Kernel-Independent 3D Volume Solver 29

2.1 Analytic Fast Multipole Method . 32

2.2 Kernel-Independent FMM . 39

viii

2.3 Motivation for an FMM Volume Solver . 44

2.4 3D Kernel-Independent FMM Volume Integral Solver 52

2.4.1 Equivalent Densities . 53

2.4.2 Upward Pass . 56

2.4.3 Downward Pass . 59

2.4.4 Near-Field Interactions . 62

2.4.5 Polynomial approximation of the solution 64

2.4.6 Polynomial force approximation from grid samples 64

2.4.7 Non-Uniform Source Distributions and Adaptive FMM 65

2.4.8 Pseudocode and Complexity for Kernel-Independent FMM Volume Solver. 72

2.5 Symmetries for precomputed interaction operators 76

2.6 Additional Boundary Conditions for the Box 82

2.6.1 Periodic Boundary Conditions . 82

2.6.2 Homogeneous Dirichlet Boundary Conditions 90

3 Numerical Results for Volume Solver in the Box 99

3.1 Overall Approximation Error . 99

3.1.1 Poisson Equation . 99

3.1.2 Modified Helmholtz Equation . 108

3.1.3 Stokes Equations . 110

3.1.4 Periodic Boundary Conditions . 112

3.1.5 Dirichlet Boundary Conditions . 115

3.1.6 Combining Smooth and Singular Sources 121

3.2 Numerical Accuracy of Operator Components 126

3.2.1 Equivalent Density Accuracy . 126

ix

3.2.2 Polynomial Basis and Grid Spacing 129

3.2.3 Tikhonov Regularization . 131

3.3 Shared-Memory Parallelization and Load-Balancing Effects 133

4 Complex Geometry Solver 140

4.1 Embedded Boundary Integral Method . 140

4.1.1 Solving the Boundary Integral . 142

4.1.2 Solving the Laplace Equation . 144

4.1.3 Putting It Together . 145

4.2 Extending the Body Forces When Boundaries are Present 146

4.2.1 Previous 2D Approach . 146

4.2.2 Current 3D Approach . 152

4.2.3 Generating List of Boxes for Which Extension Necessary 154

4.2.4 Extension Beyond the Boundary . 159

4.2.5 Interpolating Solution Values to Boundary 164

5 Numerical Results for Embedded Boundary Solver 168

5.0.6 Poisson Equation . 169

5.0.7 Modified Helmholtz Equation . 192

5.0.8 Stokes Equations . 198

Conclusion 212

5.1 Conclusions . 212

A Appendix 214

A.1 Tree-Level Restriction . 214

A.1.1 Sequential Tree Balancing . 214

x

A.1.2 Computing On-the-Fly Interactions 219

A.2 Full Tables for High-Gradient Poisson Examples 223

A.3 Derivation of Fundamental Solutions . 235

A.3.1 Derivation of Laplace Fundamental Solution 236

A.3.2 Dirac-Delta Function . 237

A.3.3 Derivation of Stokes Fundamental Solution 241

A.3.4 Properties of Harmonic Functions . 243

A.3.5 Boundary Value Problems and Surface Potentials 247

A.3.6 Solving Integral Equations . 251

A.4 Review of Finite Elements . 258

A.4.1 Finite Element Motivation in 1D . 258

A.4.2 Finite Elements in 2D . 264

A.4.3 Overview of Linear, Hilbert and Sobolev Spaces 271

A.4.4 Examples of Finite Element Spaces 276

A.4.5 Other Boundary Conditions for Finite Elements 282

A.5 Background for Solving Various Systems of Linear Equations 285

A.5.1 Direct Methods for Sparse and Banded Matrices 285

A.5.2 Iterative Methods . 292

A.5.3 The Multigrid Method . 308

A.5.4 Fourier Transforms . 315

Bibliography 329

xi

LIST OF FIGURES

1 General 3D shape with domain ω and boundary γ. 2

1.1 The 2-D computational grid for a regular rectangle. Dark circles refer to interior

points and clear circles refer to boundary points. In this example, hx = hy . . . 6

1.2 Stencil for the 5-point O(h2) approximation to the Laplacian 7

1.3 Regular 3d grid, showing a single point in black with its 27 (including itself) sur-

rounding points, from which we can build an O(h2) or O(h4) finite-difference

scheme, assuming h = hx = hy = hz . 8

1.4 Nested domains used in AMR-based computations 12

xii

1.5 For approximating the Laplacian near boundaries, we need to use interpolation

techniques. On the left, approximation of the discrete Laplacian is at a point

in Ωf , and on the right at a point in Ωc. In both cases, approximation relies

on points on the other side of Γf . On the left, one is discretizing the Lapla-

cian at a coarse grid, Ωc, which borders a finer grid, Ωf , with boundary Γf .

Computing the Laplacian at a point where a necessary neighbor crosses Γf is

a straightforward matter of interpolating fine grid values to the needed point or

using the restriction operator. For the image on the right, the Laplacian at the

finer grid needs to be approximated, and a point is necessary in Ωc for which we

do not have values. In (Martin and Cartwright, 1996b), quadratic interpolation is

used to find values at the solid white point using known information at the black

points. The, another step of quadratic interpolation is used to obtain the infor-

mation at the cross-mark from the solid white point, now known, and the point

inside of Ωf . Fine grid corners involve additional steps as outlined in (Martin

and Cartwright, 1996b). 14

1.6 Using the relationships between galaxy sizes and relative distances, we can de-

termine whether to use direct summations or far-field techniques. 18

1.7 An example full, non-adaptive quadtree. The root of the corresponding quadtree

stores information about the entire domain. Then subdivide Ω into four smaller

domains (squares of equal size for our example), such that the four nodes in

the second level of the quadtree store information about these four subdomains.

Continue this recursively as shown such that the leaves of the quadtree corre-

spond to the levels at which subdivision ceases. We can use this quadtree data

structure to subdivide Ω until each of the smallest domains store the location of

one or more particles. 19

xiii

1.8 A unit square domain with a small number of randomly non-uniformly distributed

particles. The resulting unit square with non-uniformly distributed particles is

subdivided down to the level of a single particle enclosed by a single subdivided

cell. The adaptive quadtree abstract data structure is shown to the right. Black

squares represent interior nodes which point to their children. White circles rep-

resent leaves which point to the location of a single particle. Black triangles

represent subdivided cells which point to an empty cell with no particles or chil-

dren (a leaf with no particles). Typically, we would not store these nodes, instead

representing them as null. 20

1.9 A simple two-level uniform octree. 21

2.1 Sample adaptive tree and respective domain 33

2.2 Example of expansions and translations. zS indicates an encoding of the source

points in its cell (small squares), and zT indicates an encoding of the far-field

influence to the target points (small triangles). M2M, M2L and L2L indicate the

appropriate translations as defined. 36

2.3 Boxes used by M2M, L2L and M2L operators. For box B at level `, P in the

L2L operator represents the parent ofB at level `−1, and in theM2M operator,

C represents the children of B at level ` + 1. Boxes labeled V in the M2L

operator reside in LBI . 39

xiv

2.4 The left picture represents the calculation of the potential generated from B’s

local source densities. First, the potential at the upward check surface, the dashed

line, is computed, and then this is used to compute the equivalent densities on the

upward equivalent density surface, the solid line. The potential inB from its far-

field is generated by using the equivalent densities on the downward equivalent

surface, the solid line. First, the potential induced by the far field source densities

is computed at the downward check surface, the dashed line, and this potential

is used to compute the equivalent downward density. 41

2.5 Using the same definitions for the solid lines, dashed lines, solid circles and

empty circles, the left figure represents a graphical interpretation of the M2M

translation, the middle the M2L translation and the right the L2L translations for

the kernel independent FMM. 43

2.6 On the left we see a regular distribution of particles which we project from 2D

into 1D. In 1D, we see that for the evaluation points, marked as X’s, they are reg-

ularly spaced. For some domain S, contributions from N(S) can have weights

precomputed and stored. Every interval has the opportunity to be S, so near-

field contribution weights are always stored. Given symmetry, we can save even

fewer precomputations. 45

xv

2.7 S2M andM2M kernel-independent FMM translation operators. a) S2M : given

a polynomial approximation, γB , to a smooth force, gB inside of a leaf box,B (γ

may be computed from grid point locations as indicated by ’x’), using the S2M

translation operators and precomputed quadrature weights, an upward check po-

tential, uB,u is computed at the upward check surface, xB,u (dashed lines). This

potential is then used to compute an upward equivalent coefficient density, φB,u

at the upward equivalent surface, yB,u (solid lines), by solving a linear system

of equations; b) M2M : for a non-leaf box, B and children A, we use the M2M

translation operator to compute an upward check potential, uB,u, at the upward

check surface xB,u (dashed lines), resulting from A’s upward equivalent coeffi-

cient density, φA,u. This potential is then used to compute an upward equivalent

coefficient density, φB,u at the upward equivalent surface, yB,u (solid lines), just

as in the S2M computation stage. 58

xvi

2.8 M2L and L2L kernel-independent FMM translation operators. c) M2L: for

box B, to compute the contribution from a box, V ∈ LBI , we use the M2L

translation operators to compute the induced downward check potential, uB,d at

the downward check surface, xB,d, from V ’s upward equivalent coefficient den-

sity, φV,u at its upward equivalent density surface, yB,u. uB,d is then matched

at B’s downward equivalent surface, yB,d to compute the downward equivalent

density, φB,d; d) L2L: for all other boxes in FBLBI , the L2L translation oper-

ators are used to take B’s parent, P ’s downward equivalent density, φB,d at P ’s

downward equivalent density surface, yB,d and compute the contribution to B’s

downward check potential, uB,d at B’s downward check surface, xB,d. This po-

tential is then matched at B’s downward equivalent surface, yB,d, to obtain B’s

downward equivalent density, φB,d; e) L2T translations: for leaf boxes, the L2T

translation operator translates B’s downward equivalent density φB,d at surface

yB,d to its target grid xB,g. 60

2.9 Quadtree resulting from non-uniform distribution 67

2.10 Possible box positions for different lists in a level-restricted trees in 2d 68

2.11 A three-dimensional view of the class (1, 2, 3) in the 73 grid 78

2.12 The original domain B is tiled on the infinite plane. In order to account for

periodic boundary conditions, we must calculate the potential induced on B by

a significantly large numbers of copies of itself, an intractable task if attempted

directly. 83

xvii

2.13 For our original domain, denoted by B, the periodic far-field, FB is everything

outside of the small red box (out to infinity, not just the small sampling here). All

boxes within the blue region with green labeled V s are in B’s direct interaction

list, LBI . B’s parent in the periodic domain is considered to be the box in red,

and its interaction list consists of all boxes of the same size with boxes labeled

with red V s. B’s parent’s parent is the green-outlined box, and its interaction

list consists of an additional layer of 702 boxes outside of this picture, each of

which is of size (7H)3 forH the width of our domainB. In this way, we account

for
(
3N+1 − 3

)
/2 rings of B (or (3N+1)3 − 33 copies of B) after just N steps,

going out
∑N

i=1 3i concentric rings of B. 84

2.14 For our original domain, denoted by B, we modify the M2M and L2L oper-

ations for calculating the far-field interactions. Left: We calculate the upward

equivalent density induced by the domain and all of its immediate neighbors

(simply copies of itself, occupying the space of size (3H)d, centered at the do-

main of width H) at its parent B∗; this process is continued up N levels. Right:

For passing the downward equivalent densities downward, we modify the L2L

operator to calculate the far-field potential from parent B∗ to its center child, B

only; at the completion of this step, our original domain has a description of its

entire periodic far-field domain in its downward equivalent density, which is in

turn passed downward through the tree. 86

xviii

2.15 Left: For a box B with source distribution fB in the dark black box, we reflect

fB across the right boundary and negate it as f̃RB . Repeating this across the

other boundaries and considering symmetries results in the tiling above. The

group of boxes surrounded by dotted lines, denoted as the supercell, tiles the

plane, and we can embed this in the periodic solver. In three dimensions, the

group is 8 boxes. Right: More easily seen in a symbolic format, the box in red

represents our original source distribution, with the blue boxes representing the

proper reflections (the shape in black implies the force values are also negated).

Again, the union of the blue and red boxes denote the supercell which tiles the

infinite domain. 91

2.16 For some domain D in two dimensions, we show a single leaf B in D’s sub-

domain (all other leaves are not drawn here) as well as reflections of B across

the boundaries such that the Dirichlet boundary condition of u = 0 is satisfied

there. Here, we consider that B has itself as well as its reflections as direct

neighbors in LBU , its near-neighbor interaction list. 92

2.17 For some box B with upward check surface xB,u and equivalent surface yB,u,

let B′ be a single reflection of B (and negation of its smooth force distribution)

across some boundary. Then, the relative positions of the check and equivalent

surfaces, xB
′,u and yB

′,u respectively are mapped back to their reflections in

order to permute φB,u to φB
′,u . 95

2.18 Left: A fully-balanced domain with multiple levels approaching one corner of

the boundary; Right: After performing all rotations to the domain, the supercell

is fully-balanced across all boundaries. 98

xix

3.1 Sample force distributions based on adaptive refinement. Each point, colored by

its tree level, `, indicates the center of a leaf box, B. Left: A single sharply-

peaked Gaussian function; Middle: A discontinuous force distribution, equal to

one inside a sphere and zero outside; Right: A discontinuous force distribution

involving oscillatory functions restricted to the interiors of a set of three spheres. 100

3.2 Plot of Periodic Boundary Conditions Example 1. We look at a single slice of the

force on the top and solution on the bottom for z = −0.25. The nearly-uniform

nature of this test force results in a low level of adaptive refinement. 113

3.3 Plot of Dirichlet Boundary Conditions Example 2. Top: A single slice of the

smooth force distribution; Bottom: A single slice of the solution. For both,

z = −0.25, and we note the high-gradient nature near the corner of x = y = −1

results in a highly-adaptive refinement near the boundary of the domain. 119

3.4 Error due to upward equivalent density approximation of the field. From left to

right, three columns show the errors for the polynomial force approximations

of degree 4, 6 and 8. Each plot shows four levels of FMM precision, εfmm =

10−np , p = n3
p−(np−2)3 points are used on the surfaces yB,u and xB,u. For the

evaluation surfaces S, we vary the radiusRS from 3.1 to 5.9, the region covering

LBI ∈ FB . The y-axis of each plot is the infinity norm ||uequiv − uexact||∞
computed over 488 samples on S. 128

xx

3.5 For each of the test examples, the x-axis indicates the negative log of the re-

quested FMM accuracy, εfmm, and the y-axis indicates the log of E2. The num-

ber of points chosen for each εfmm is similar to those in Example 1 of section

3.1.1 for εrhs = εfmm. Left: for polynomial approximation of degree 4 and

xB,g of size 43 on each leaf B, overall relative error is close for equispaced and

Chebyshev points. Middle: For n, k = 6 differences are visible but insignificant.

Right: For n, k = 8, solutions based on equispaced grid are less accurate. . . . 130

3.6 For each of the test examples, the x-axis indicates the negative log of the re-

quested FMM accuracy, εfmm, and the y-axis indicates the log of E2. The num-

ber of points chosen for each εfmm is similar to those in Examples 1 of sec-

tion 3.1.1 and section 3.1.3 for εrhs = εfmm. Left: for polynomial approxima-

tion of degree 6 for the Laplace kernel with and without regularization. Right:

for polynomial approximation of degree 6 for the Stokes kernel with and without

regularization. 132

3.7 Top: Log-log plot for timings from table 3.12, Bottom: Log-log plot for timings

from table 3.13. In both examples, total FMM computation time, TFMM exhibits

good, nearly-linear scaling with shared-memory parallelization. 138

4.1 The original domain is embedded in a uniformly-discretized domain. 141

4.2 Reproduced from (Ying et al., 2006), this figure shows how to perform the nearly

singular integration and further details the notation 146

4.3 Classification of leaf nodes. Nodes marked by an asterisk, ∗ are irregular, those

marked with a plus, + are semiregular, and the rest are regular. 148

4.4 An irregular box where only a few source points are known. In order to approx-

imate the force at this node, extrapolation or other techniques are necessary. . . 149

xxi

4.5 Irregular regions are bounded by boxes of the same scale as boxes at that level in

the hierarchy, such that all corners of the irregular leaf box are included, and as

much of the interior domain is included as well. The bounding box is the dashed

box. 150

4.6 The leaf node which includes the irregular region (solid black lines) only has

a few available internal points. The points that are available for interpolation

and extrapolation purposes are located by seeing which leaf nodes touch the

bounding box (dashed lines) of the irregular region. 151

4.7 A subset of a 2D tree T in which four leaf boxes are shown with an overlapping

domain. Points within the domain are represented, and as can be seen, several

boxes do not have full grid representations. Here, k = 4. 153

4.8 Top left: We begin with a subdivided domain which is not balanced; Top middle:

In this example, investigating an interior problem, we are not concerned with

exterior boxes yet. We identify all primary violators of the tree-level restriction

(in red); Top Right: All violators are subdivided and their descendants (in green)

are identified; Bottom left: All descendants that are in violation of tree-level

restriction are identified (in red); Bottom middle: All violators subdivided and

descendants identified (in green); Bottom right All tree-level violations inside of

the domain have been taken care of. 155

4.9 We identify all leaf boxes for which extension will need to be performed. Left:

All leaf boxes which overlap the boundary are tagged (in blue); Middle: The

boundary may pass very close to an exterior box, so we must extend the force

here as well; Right: All leaf boxes which are in the exterior of the boundary and

are direct neighbors with a leaf box which overlaps the boundary are identified

(in purple). 156

xxii

4.10 Top left: All leaf boxes in the exterior, for which extension will be performed

but are in violation of our strict 1:1 level restriction are identified (in red) while

all exterior leaf boxes not in violation are left as is (in purple); Top middle: All

violators are subdivided and descendants are identified; Top right: All descen-

dants leaf boxes in the exterior which directly touch a leaf box overlapping the

boundary and are at a level more shallow are identified as in violation (in red);

Bottom left: Violators are subdivided and descendants tagged (in green); Bot-

tom right: All boxes, for which extension will be performed are identified: blue

boxes overlap the boundary while purple boxes have an boundary-overlapping

leaf box as a neighbor, now at the same depth in the tree. 157

4.11 Left: Select a box B which overlaps the boundary and has an under-resolved

grid of points in the interior of the domain; Middle: Locate immediately adjacent

neighbors; Right: Locate boxes further away for inclusion in extrapolation . . . 160

4.12 From Top-Left to Top-right. For a boxB, we assumeB does not have a sufficient

number of points, so we look at the boxes in its near-field (marked on the a). If

there are still not enough points, we search throughB’s interaction list (b). While

there are still not enough points to build an interpolant, we recursively searchB’s

ancestors’ interaction lists (c). Assuming the region marked contains a sufficient

number of points (in this case, this region is NB), let this larger region be B̃.

Build an interpolant to the forces in B̃ (d). In (e), we evaluate this polynomial

approximation at grid points xB,g in B. In (f), we use the evaluated grid-located

forces to compute B’s local approximation to the force distribution. 163

xxiii

4.13 Left: For surface discretization points (in blue) and for a box such as B in red

with grid solution locations (represented by circles), we can see that interpolating

to B’s surface target point, xt from B’s solution locations is unstable; Right: We

locate a cell-centered box B̃ with k3 points with the target point near the center

of cB̃ . 165

4.14 For a uniformly-refined tree to depth d, we place 100 surface points on a sphere

at z = 0 and interpolate from the box B, in which each target point xt is lo-

cated, first using just B’s points and then a cell-centered box B̃, built using the

approach above. The target points can be designated as x = R(cos θ, sin θ, 0)

for θ ∈ [0, 2π), so we only plot a single quadrant of error values for θ ∈ [0, π/2]

as the symmetric nature of our test function produces a repetition in the plotted

error values. Left: We set d = 4. Absolute maximum error for non-centered

approach is 3.9E − 03 and for centered approach is 1.1E − 03; Middle: We set

d = 5. Absolute maximum error for non-centered approach is 4.7E−04 and for

centered approach is 4.0E − 05; Right: We set d = 6. Absolute maximum error

for non-centered approach is 2.5E − 05 and for centered approach is 6.9E − 07. 166

5.1 4 shapes for which we test our solvers. a) Analytic sphere; b) Closed pipe joint;

c) Two-hole torus; d) Starfish. All 4 shapes are enclosed within a box of size

[−1, 1]3 and all computations are run on a domain of size [−2, 2]3 to guarantee

adequate spatial room for solvers. 169

xxiv

5.2 For shapes 5.1(a), (b), and (c), we plot the log of the relative error in the bound-

ary integral solver test case versus the log of the surface discretization, hs for

the Laplace equation solver. The number of surface points for equivalent hs val-

ues for each shape are similar. As the shape becomes more complicated, the

convergence rate decreases. 171

5.3 For Poisson equation solver, Left: Log-log plot of relative error, E2 versus sur-

face discretization, hs for the three shapes in figure 5.1(a)-(c) for full embedded

boundary solver in the absence of a volume force and for target discretization

hvol = 0.0078125. For the sphere shape (figure 5.1(a)), the number of tar-

get points, Npts = 4498024; for the closed pipe joint shape (figure 5.1(b)),

Npts = 2231752; for the two-hole torus shape (figure 5.1(c)), Npts = 1298880.

Right: For figure 5.1(b), we investigate the full solver as we increase the number

of volume and surface points. For small hs, the boundary solver dominates the

computation time. 173

5.4 For sphere shape 5.1(a) of radiusR = 0.8 and high gradient force in equation 5.1

with s = 10, we look at a particular slice for z = 0. The force is spherically

symmetric about the origin. 175

5.5 Uniform refinement E2 versus depth plots for (left) no extension (force known

everywhere) and (right) extension to overlapping and exterior leaves for polyno-

mial approximation of orders k = 3, 4 (top and bottom), results from tables A.1

and A.2, respectively. 177

5.6 Uniform refinement E2 versus depth plots for (left) no extension (force known

everywhere) and (right) extension to overlapping and exterior leaves for polyno-

mial approximation of orders k = 5, 6 (top and bottom), results from tables A.3

and A.4, respectively. 178

xxv

5.7 Example slice of the octree for high-gradient force in equation 5.1 at z = 0 and

s = 10 for εrhs = 4, k = 6. Leaves in the octree marked as interior are indicated

in blue; exterior leaves are indicated in red; and overlapping leaves are indicated

in green. 179

5.8 Log-log plot for adaptive refinement andE2 versus εrhs plots using our extension

to overlapping and exterior leaves for polynomial approximation of order k = 3

(Left) and k = 4 (Right), from results tables A.5 and A.6, respectively. 180

5.9 Log-log plot for adaptive refinement andE2 versus εrhs plots using our extension

to overlapping and exterior leaves for polynomial approximation of order k = 5

(Left) and k = 6 (Right), from results tables A.8 and A.10, respectively. 181

5.10 Log-log plots comparing the results for uniform refinement against adaptive re-

finement by comparing relative error results for both solvers versus the error

metric, fcomp, computed at all interior and overlapping leaf boxes, B in our oc-

tree T . For k = 3: Left: s = 2; Middle: s = 5; Right s = 10. 182

5.11 Log-log plots comparing the results for uniform refinement against adaptive re-

finement by comparing relative error results for both solvers versus the error

metric, fcomp. For k = 4: Left: s = 2; Right: s = 5. 182

5.12 Log-log plots comparing the results for uniform refinement against adaptive re-

finement by comparing relative error results for both solvers versus the error

metric, fcomp. For k = 4: Left: s = 10; Right: s = 20. 183

5.13 Log-log plots comparing the results for uniform refinement against adaptive re-

finement by comparing relative error results for both solvers versus the error

metric, fcomp. For k = 5: Left: s = 2; Middle: s = 5; Right: s = 10. 183

xxvi

5.14 Log-log plots comparing the results for uniform refinement against adaptive re-

finement by comparing relative error results for both solvers versus the error

metric, fcomp. For k = 5: Left: s = 20; Right: s = 40. 184

5.15 Log-log plots comparing the results for uniform refinement against adaptive re-

finement by comparing relative error results for both solvers versus the error

metric, fcomp For k = 6: Left: s = 2; Middle: s = 5; Right: s = 10. 184

5.16 Log-log plots comparing the results for uniform refinement against adaptive re-

finement by comparing relative error results for both solvers versus the error

metric, fcomp For k = 6: Left: s = 20; Middle: s = 40; Right: s = 80. 185

5.17 Example slice of the octree for Poisson example 3 with nonzero volume force

in equation 5.3 for shape 5.1(c). Here, we set εrhs = 10−6 and the polynomial

order k = 6 for refinement. Leaves in the octree marked as interior are indicated

in blue; exterior leaves are indicated in red; and overlapping leaves are indicated

in green. 189

5.18 Left: Log-log plot of relative error versus surface discretization for the EBI solver

with non-zero volume force in example 2 and table 5.4 above for the closed pipe

joint shape in figure 5.1(b). Right: Log-log plot of relative error versus sur-

face discretization for embedded boundary solver with non-zero volume force in

example 3 and table 5.8 above for the two-hole torus shape in figure 5.1(c). . . 191

5.19 Example slice of the octree for the nonuniform force in equation 5.4 at z = 0 for

α = 1/4, k = 4 and εrhs = 10−8. Leaves in the octree marked as interior are

indicated in blue; exterior leaves are indicated in red; and overlapping leaves are

indicated in green. 195

xxvii

5.20 For shapes 5.1(a), (b), and (c), we plot the log of the relative error in the bound-

ary integral solver test case versus the log of the surface discretization, hs for

the Stokes equations solver. The number of surface points for equivalent hs val-

ues for each shape are similar. As the shape becomes more complicated, the

convergence rate decreases. 199

5.21 For Stokes equations solver, Left: Log-log plot of relative error, E2 versus sur-

face discretization, hs for the three shapes in figure 5.1(a)-(c) for full embedded

boundary solver in the absence of a volume force and for target discretization

hvol = 0.0078125. For the sphere shape (figure 5.1(a)), the number of tar-

get points, Npts = 4498024; for the closed pipe joint shape (figure 5.1(b)),

Npts = 2231752; for the two-hole torus shape (figure 5.1(c)), Npts = 1298880.

Right: For figure 5.1(b), we investigate the full solver as we increase the number

of volume and surface points. For small hs, the boundary solver dominates the

computation time. 201

5.22 For sphere shape 5.1(a) of radiusR = 0.8 and high gradient force in equation 5.5

with s = 10, we look at a particular slice of the force for z = 0 for the z-

component of the force. The force is symmetric across axes. Left and middle:

Volume force; Right: Solution, uz . 202

5.23 For sphere shape 5.1(a) of radiusR = 0.8 and high gradient force in equation 5.5

with s = 10, we look at a particular slice of the force for z = 0.375 for the z-

component of the force. The force is symmetric across axes. Left and middle:

Volume force; Right: Solution, uz . 203

xxviii

5.24 For Stokes equations adaptive solver with high-gradient extension. Left: Log-log

plot of relative error,E2 versus surface discretization, εrhs for shape figure 5.1(a)

and polynomial order of k = 3 for results in table 5.17. Right: Log-log plot of

relative error, E2 versus surface discretization, εrhs for shape figure 5.1(a) and

polynomial order of k = 4 for results in table 5.18. 206

5.25 For Stokes equations adaptive solver with high-gradient extension. Left: Log-log

plot of relative error,E2 versus surface discretization, εrhs for shape figure 5.1(a)

and polynomial order of k = 5 for results in table 5.19. Right: Log-log plot of

relative error, E2 versus surface discretization, εrhs for shape figure 5.1(a) and

polynomial order of k = 6 for results in table 5.20. 209

5.26 Plots of E2 and E∞ errors for results from table 5.21. 211

A.1 A 2D example of a quadtree with tree-level violations. 216

A.2 Identifying primary and secondary violators 216

A.3 Subdividing initial violators . 217

A.4 Identifying and subdividing descendants of violators 218

A.5 Level-restricted tree from balancing . 219

A.6 Extreme tree-level balancing scenario . 220

A.7 Ω̂ ⊂ Ω represents a circular disk with center at the point of singularity, (a, b)

and radius of rmax. 240

A.8 Example of the type of piece-wise continuous function, v ∈ Vh, which is linear

on each subinterval, (xi−1, xi). The y-axis represents the value of v(xi) at each

point xi. 260

A.9 The basis function, φi, as defined. 261

xxix

A.10 A domain triangulated into separated triangles,Ki for i = 1, ...,m (m = number

of triangles in the domain). Each node is labeledNj for j = 1, ..., n, correspond-

ing to a discretization point for our domain. 266

A.11 Example basis function, φj , supported over triangles Ki, which have node, Nj ,

as a vertex. 267

A.12 Example of a small regular 2D problem using finite element methods from (Braess,

2001). 268

A.13 Example quadratic basis function, φj ∈ P2, supported over triangles Ki, which

have node, Nj , as a vertex. This an example of a vertex type basis function in P2. 278

A.14 Example quadratic basis function, φj ∈ P2, supported over triangles Ki, which

have node, Nj , as a vertex. This an example of a edge type basis function in P2. 278

A.15 Triangular elements of type P1, P2, and P3 from left to right. For these ele-

ments, we need 3, 6 and 10 degrees, respectively, as indicated by the number of

nodes necessary to build the basis functions of necessary order. 279

A.16 A domain, Ω which has been subdivided into quadrilaterals of varying size. Black

nodes indicate interior points while white nodes indicate points on the boundary,

∂Ω. 280

A.17 Example of a basis function, φi ∈ Q1, defined over quadrilateral elements. . . . 280

A.18 Example of a basis function, φi ∈ Q1, defined over quadrilateral elements. . . . 281

A.19 A domain whose domain points have been poorly numbered for the Poisson

equation. The resulting matrix of coefficients is inefficiently banded, resulting

in an inefficient solver. 291

A.20 Split A into matrices D and E as seen and described above. Further E is split

into L0 and U0. 294

xxx

A.21 For a system of equations, we can haveAu = b for b 6= c∗u for some constant, c.

IfAu = λu, then u is an eigenvector with corresponding eigenvalue, λ. A = AT

corresponds to a symmetric real matrix. 296

A.22 Construction of p[1] begins with setting p[0] = γ0 where γ0 and γ1 are pre-known

linearly independent vectors. We use the fact that γ1 consists of a part, γ̄1 which

is parallel to p[0] and γ̂1 which is conjugate to p[0]. Following conjugation, via

the process above, we set p[0] = γ̂1 such that p[0] and p[1] are conjugate. 300

A.23 A series of grids of increasing refinement. For Multigrid, we maintain a hierar-

chy of grids where the finest grid is of size n× n, the next grid in the hierarchy

in the coarsening direction is of size n
2 ×

n
2 , the next of size n

4 ×
n
4 and so for

the number of grids in our hierarchy. The example above shows a hierarchy of 4

grids, where the coarsening and refinement directions are indicated. 309

A.24 A hierarchy of two grids: a coarse one, G[c] and a fine one, G[f]. 310

A.25 A basic V-cycle, indicating how we can move between our hierarchy of grids in

coarsening direction (down theG[i] axis), and the refinement direction (down the

G[i] axis). 313

A.26 A full Multigrid V-cycle often seen for constructing a solution to a system of

linear equations. We begin at the coarsest grid, G[1] to construct an initial solu-

tion for the iterative method used on G[2] and so on. We move up and down the

hierarchy of grids to smooth the high frequencies from the residuals. 314

xxxi

LIST OF TABLES

2.1 Computational complexity and storage requirements for a scalar homogeneous

kernel. These values scale linearly for matrix and inhomogeneous kernels. . . . 75

2.2 Series of equivalence classes of cubes in an N3 grid. For even N = 2M , only

the first 3 series of classes may be nonempty. For odd N = 2M + 1, all classes

are present. For M ≤ 2, (i, j, k) classes are empty, and for M = 1, (i, i, j) and

(0, i, j) classes are also empty. Class (0,0,0) corresponding to the center of the

grid, exists only in layer 0. In the figures, boxes in different classes in one series

are marked with circles of different colors, representative boxes are marked with

circles with black border. The view is from the top, with first index direction to

the right, second direction up and third towards the viewer, as in Figure 2.11. . 79

3.1 Free-Space Poisson Equation, Example 1: Gaussian bump at the origin numeri-

cal results. 102

3.2 Free-Space Poisson Equation, Example 2: Discontinuous Force numerical results. 104

3.3 Free-Space Poisson Equation, Example 3: Discontinuities along several spheri-

cal surfaces containing oscillating source distributions numerical results. 107

3.4 Free-Space Modified Helmholtz Equation example: Gaussian bump at the origin

numerical results. 109

3.5 Free-Space Stokes Equation example numerical results. 111

3.6 Periodic Boundary Conditions example numerical results. 114

3.7 Dirichlet Boundary Conditions first example numerical results. 116

3.8 Dirichlet Boundary Conditions second example numerical results. 120

3.9 Poisson equation with singular sources only. 122

xxxii

3.10 Poisson equation with smooth sources only. 124

3.11 Poisson equation with a mixture of smooth and singular sources example numer-

ical results. 125

3.12 Timings (all in wall-time seconds) for the various components of the FMM vol-

ume solver for a fixed problem size for the Poisson equations. The polynomial-

order, εrhs, and εfmm are set to 8. The number of leaves, M` = 5440, the tree

level, LT = 7, and Npts = 2785280 as seen in Example 1. Nprocs indicates the

number of processors, which we scale linearly. We separate the S2M/M2M ,

Near (U ,W ,X-list computations),M2L (V -list computations), L2L/L2T tim-

ings with the total shown as TFMM . The scaling Rate is shown last. 136

3.13 Timings for the various components of the FMM volume solver for a fixed prob-

lem size for the Stokes equations. The polynomial-order, εrhs, and εfmm are set

to 6. The number of leaves, M` = 4894, the tree level, LT = 7, and Npts =

2505728 as seen in Example 5. Nprocs indicates the number of processors, which

we scale linearly. We separate the S2M/M2M , Near (U ,W ,X-list computa-

tions), M2L (V -list computations), L2L/L2T timings with the total shown as

TFMM . The scaling Rate is shown last. 137

5.1 Boundary Integral Solver test case for Laplacian with shape 5.1(b). These results

show an increase in accuracy, rate of convergence, and speedup from (Ying et al.,

2006) through minor improvements and enhancements to the existing method. . 170

xxxiii

5.2 Results for full solver in the absence of an underlying volume force for the in-

terior Dirichlet Poisson equation and figure 5.1(b). The total number of target

points is 2231752, consisting of all points lying on a regular grid of discretiza-

tion size hvol = 0.0078125 inside of [−2, 2]3. For larger hvol, error values are

nearly equivalent while timings can vary greatly as seen in figure 5.3(b). 172

5.3 For the full solver and uniform refinement using figure 5.1(a) with radius R =

0.8, we solve the Poisson equation with high-gradient right-hand side. When no

extension is used, we assume all leaves in [−1, 1]3 are used; whereas, when we

introduce our extension, only exterior leaves with a neighbor leaf overlapping

the boundary are used in the computation. The corresponding leaf counts are

shown for varying tree depths, Td, surface discretization, hs and surface points,

Ns. Lin, Lcrv, and Lout refer to the total number of interior, overlapping, and

exterior leaves used in the volume solver computation, respectively. 176

5.4 EBI Poisson closed pipe joint. Non-zero volume force. Here, we set the volume

target discretization to hvol = 0.0078125 with target point size Nvol = 2231752

for all tests from example problem in equation 5.2. We fix the polynomial ap-

proximation at k = 6. For a specific hs, the number of surface points is equiva-

lent to those given in Table 5.1. For εrhs, the depth of the tree Td and the number

of corresponding volume source points, Nsrc used in computing the extension

for the free-space volume solver is given in Table 5.5. 186

xxxiv

5.5 For Table 5.4, for Poisson Test Example 2, for a given εrhs, the resulting octree

is of depth Td. We fix the polynomial approximation to order k = 6, so each leaf

has either a full grid of size 63 or a fraction thereof (for leaves overlapping the

boundary). The number of volume source points from these full or partial grids is

given byNsrc. This is the number of points available for building the polynomial

approximation for interior leaves or building the extension for overlapping or

exterior leaves. 187

5.6 For figure 5.1(c), given surface discretization hs, Ns is the corresponding num-

ber of surface points. 188

5.7 For Table 5.8; given εrhs, the resulting octree is of depth Td. We fix the polyno-

mial approximation to order k = 6, and the definition of Nsrc follows the same

as in Table 5.5. 188

5.8 Full EBI solver for Poisson equation example 3 for figure 5.1(c) and non-trivial

volume force. Here, we set the volume target discretization to hvol = 0.0078125

with target point size Nvol = 1298880 for all tests from example problem in

equation 5.3. We fix the polynomial approximation order to k = 6. Table 5.6

gives the number of surface points used in the boundary integral solver for a

specific surface discretization, hs and Table 5.7 gives the corresponding volume

source points, Nsrc used in computing the extension for the free-space volume

solver. 190

xxxv

5.9 EBI solver for the Modified Helmholtz equation for figure 5.1(d) and non-zero

volume force. Non-zero Here, we set the volume target discretization to hvol =

0.0078125 with target point size Nvol = 621996 and vary the polynomial ap-

proximation order for k = 4, 6. Table 5.10 gives the number of surface points

used in the boundary integral solver for a specific surface discretization, hs and

Table 5.11 gives the corresponding volume source points, Nsrc used in comput-

ing the extension for the free-space volume solver. 193

5.10 For figure 5.1(d), given surface discretization hs, Ns is the corresponding num-

ber of surface points. 194

5.11 For Table 5.9, for Helmholtz Test Example 1, for a given εrhs, the resulting

octree is of depth Td. We fix the polynomial approximation to order k = 6, and

the definition of Nsrc follows the same as in Table 5.11. 194

5.12 EBI solver for the Modified Helmholtz equation for figure 5.1(b) and non-zero

volume force. Non-zero Here, we set the volume target discretization to hvol =

0.0078125 with target point size Nvol = 2231752 and vary the polynomial ap-

proximation order for k = 4, 6. 196

5.13 For figure 5.1(b), given surface discretization hs, Ns is the corresponding num-

ber of surface points. 197

5.14 For Table 5.12, for Helmholtz Test Example 1, for a given εrhs, the resulting

octree is of depth Td. We fix the polynomial approximation to order k = 6, and

the definition of Nsrc follows the same as in Table 5.14. 197

5.15 Boundary Integral Solver test case for the Stokes kernel with shape 5.1(b). These

results show an increase in accuracy, rate of convergence, and speedup from

(Ying et al., 2006) through minor improvements and enhancements to the exist-

ing method. 199

xxxvi

5.16 EBI Stokes closed pipe joint. Zero volume force. 200

5.17 High-gradient Stokes test case for polynomial-approximation of order k = 3.

For each specific level of precision in the right-hand side, εrhs, we set the FMM

precision, εfmm = εrhs (except for εrhs = 1, for which εfmm = 10−2) in order

to guarantee FMM precision does not dominate the error. Further, we choose the

surface discretization, hs such that the error from the boundary solver is more

precise than εrhs as well (using previous results from boundary and embedded

boundary solver without volume force to choose proper hs for sphere shape). For

adaptively refined octree from specific εrhs, Lin denotes the number of leaves

fully inside of the sphere; Lcrv denotes the number of leaves overlapping leaves;

Lout denotes number of exterior leaves which are used in the computation of the

free-space volume source; Ltot is the total number of leaves used in the free-

space evaluation. Lcrv +Lout are the number of leaves for which extension may

be necessary, whereas all interior leaves use their full k3 grid for computing kth-

order approximation. Nsvol is the total number of source points used to build the

coefficients for the force approximation. 204

5.18 High-gradient Stokes test case for polynomial-approximation of order k = 4.

Other header details are available in table 5.17. 205

5.19 High-gradient Stokes test case for polynomial-approximation of order k = 5.

Other header details are available in table 5.17. 207

5.20 High-gradient Stokes test case for polynomial-approximation of order k = 6.

Other header details are available in table 5.17. 208

5.21 EBI solver for the Stokes equations with figure 5.1(b) and non-zero volume force.

Here, we set the volume target discretization to hvol = 0.0078125 with target

point size Nvol = 2231752 for all tests. 210

xxxvii

5.22 For figure 5.1(b), given surface discretization hs, Ns is the corresponding num-

ber of surface points. 211

5.23 For Table 5.21, for Stokes Test Example 2, for a given εrhs, the resulting octree

is of depth Td. We fix the polynomial approximation to order k = 6, and the

definition of Nsrc follows the same as in Table 5.23. 211

A.1 For the uniform leaf counts from table 5.3 for use with no extension versus ex-

tension, and a polynomial approximation of k = 3, we compare the errors for

the high-gradient Poisson test case for various values of s. 224

A.2 For the uniform leaf counts from table 5.3 for use with no extension versus ex-

tension, and a polynomial approximation of k = 4, we compare the errors for

the high-gradient Poisson test case for various values of s 225

A.3 For the uniform leaf counts from table 5.3 for use with no extension versus ex-

tension, and a polynomial approximation of k = 5, we compare the errors for

the high-gradient Poisson test case for various values of s 226

A.4 For the uniform leaf counts from table 5.3 for use with no extension versus ex-

tension, and a polynomial approximation of k = 6, we compare the errors for

the high-gradient Poisson test case for various values of s. 227

A.5 High-gradient adaptive Poisson tests for k = 3. 228

A.6 High-gradient adaptive tests for k = 4, continued in Table A.7. 229

A.7 High-gradient adaptive tests for k = 4, continued from Table A.6. 230

A.8 High-gradient adaptive tests for k = 5, continued in Table A.9. 231

A.9 High-gradient adaptive tests for k = 5, continued from Table A.8. 232

A.10 High-gradient adaptive tests for k = 6, continued in Table A.11. 233

A.11 High-gradient adaptive tests for k = 6, continued from Table A.10. 234

xxxviii

INTRODUCTION

Many problems in scientific computing call for the efficient solution to linear partial differential

equations (PDEs) with constant coefficients. On regular grids with separable Dirichlet, Neumann

or periodic boundary conditions, such equations can be solved using fast, direct methods. For

free-space boundary conditions and highly nonuniform source distributions defined on adaptive

and/or unstructured grids, alternative approaches are necessary. We describe a direct high-order

adaptive solver for inhomogeneous linear constant-coefficient PDEs in three dimensions with

decay conditions at infinity:

L(u)(x) = f(x) supp(f) ⊂ Ω, (1)

where Ω is a bounded domain in R3, and u(x) = O(1/|x|) as |x| goes to infinity. Our solver

uses a kernel-independent fast multipole method (FMM) (Ying et al., 2003; Ying et al., 2004b),

which can be applied to any PDE, for which a free-space Green’s function evaluation routine

is provided. It handles highly nonuniform sources in an efficient manner, using an adaptive ap-

proximation of the right-hand side. The structure of the solver allows for natural integration with

FMM-based boundary integral equation techniques, leading to the construction of an adaptive

kernel-independent embedded boundary solver for inhomogeneous PDEs in complex geometries

with Dirichlet boundary conditions. In particular, the solution is often desired inside or outside

of some complex domain ω with boundary γ as in figure 1

In regular geometries, this has been well-studied, and in two dimensions there are a variety of

solvers which work with complex smooth geometries or highly non-uniform force distributions.

In three dimensions, in particular, there are current fast methods for smooth complex geometries

and uniform force distributions, based in potential theory. We will discuss several of these

1

n

γ

ω

Figure 1: General 3D shape with domain ω and boundary γ.

approaches.

Potential theory has laid the groundwork for the analysis and computation of elliptic bound-

ary value PDEs. Applications of this theory have been seen in fluid mechanics, electrodynamics,

acoustics and planetary simulations, among others. Potential theory uses integral equations for

the Poisson equation in unbounded space, where the solution in two and three dimensions is the

convolution of the force with a fundamental Green’s solution. In particular, if we consider (1) to

be the Poisson equation,

−∆u(x) = f(x),

the solution to in the absence of physical boundaries can be written as the convolution of the

force with the Green’s function G(x,y) = (1/4π(|x− y|)−1) in three dimensions:

u(x) =
1

4π

∫
f(y)

|x− y|
dy

For smooth and piecewise-smooth boundaries, boundary integral equations can be developed

using integral equations There are several advantages to using potential theory based approaches,

including

2

• No need for complex mesh generation for calculating volume potentials,

• Far-field boundary conditions can be satisfied, and

• Higher degrees of accuracy.

Unfortunately, numerical approaches based in potential theory can be computationally ex-

pensive performed naı̈vely. In order to obtain asymptotic optimality, several issues need to be

addressed. Specifically,

• Fast solvers should be incorporated. The operators resulting from a boundary integral ap-

proach can result in dense systems of linear equations, which are difficult to solve with

traditional methods. Solvers exist for decreasing computational complexity while main-

taining high levels of accuracy.

• Discretization rules for the integral operators must be chosen wisely. The kernels based on

the fundamental solutions can include singularities, so quadrature methods or projection

methods in the development of such rules must be developed wisely.

• Boundaries must be represented carefully. For smooth boundaries, rules have been devel-

oped in two and three dimensions to insure high levels of accuracy.

• Evaluating solutions near boundaries is often needed. For potential theory based methods,

difficulties arise with nearly singular integration.

• Distributed body forces may be nonuniform or highly so. For many problems, body forces

are not available everywhere; evaluations of potentials need to incorporate the ability to

take this into account.

3

Currently, the ability to incorporate a fast integral equation solver for elliptic PDEs, allowing

for non-uniform distributions of forces in three dimensions with high accuracy is needed. The

main added benefits of the proposed method will be:

• Ability to handle highly non-uniform force distributions. Using adaptive methods based

on integral equations without grids, current methods, which rely on uniform force distri-

butions for solving the free-space Poisson equation, can be improved.

• Ability to handle complex geometries. Current methods support fast methods for arbitrar-

ily smooth geometries, and we incorporate these into our method.

• High accuracy. Using methods based in potential theory allows for direct evaluation of the

solution at a non-uniform distribution of target points at high levels of accuracy. quickly.

• In the use of the kernel-independent FMM, an added benefit will be the straightforward

extension to a large class of elliptic PDEs

Our approach is based on the Embedded Boundary Integral Approach from the work of

(Ying et al., 2004a; Mayo, 1984). For distributed forces available everywhere, (Ying et al.,

2006) discretizes the regular domain for an FFT-solver. For a non-uniform force distribution,

this approach is inadequate. We propose to use the volume integral approach of (Ethridge and

Greengard, 2001; Ethridge, 2000) along with the kernel-independent Fast Multipole Method

(Ying et al., 2004b; Ying et al., 2003). For smooth boundaries, Nyström methods are available

along with nearly singular integration for evaluation of potentials near the boundary (Ying et al.,

2006; Bruno and Kunyansky, 2001).

We begin by discussing many of the methods used for solving elliptic PDEs in free-space

and in more complex geometries and then discuss our methods.

4

1
RELATED WORK

Several approaches have been developed for solving second-order constant-coefficient PDEs.

The majority of these approaches fall under several categories; specifically, most involve fast

Fourier transforms or some variation, grid methods, or fast direct solvers. We discuss each of

these approaches below, focusing on fast direct methods last as this is the major focus of our

approach, specifically the Fast Multipole Method.

1.1 Fast-Fourier Based Solvers

For regular grids in separable coordinate systems (rectangles, disks, spheres, etc) fast methods

for constant-coefficient second order PDEs are well-established (Buzbee et al., 1970; Canuto

et al., 1987). These methods generally rely on cyclic reduction and/or fast Fourier transforms

(FFTs) to achieve nearly linear scaling. FFT-based methods are based on regular discretizations

of a domain. As an example of a regular grid, consider figure 1.1

If we were solving the Poisson equation for example and assume we are able to evaluate

the discrete Laplacian on this regular grid, it is possible to build a system of linear equations,

Au = b where A is a block tridiagonal symmetric Toeplitz (TST) matrix. For example, let our

domain in figure 1.1 be Ω = (0, Lx)×(0, Ly), and letNx andNy be integers defining how many

sections we will discretize Ω into in the x and y directions, respectively. Let the step-size in the

x-direction be hx = Lx/Nx, and in the y-direction be hy = Ly/Ny. Therefore, our grid-points

are defined as xi,j = (i ∗ hx, j ∗ hy), where 0 ≤ i ≤ Nx, 0 ≤ j ≤ Ny. Grid-points on the

boundary, ∂Ω are explicitly defined as:

5

���� ���� ���� ���� ����

��������

���� ���� ���� ���� ����

������������

���� ���� ���� ���� ����

���� ���� ����

���� ����

Figure 1.1: The 2-D computational grid for a regular rectangle. Dark circles refer to interior

points and clear circles refer to boundary points. In this example, hx = hy

∂Ω =

x0,j | 0 ≤ j ≤ Ny ∪

xNx,j | 0 ≤ j ≤ Ny ∪

xi,0 | 0 ≤ i ≤ Nx ∪

xi,Ny | 0 ≤ i ≤ Nx

.

Using the notation that u(xi,j) = ui,j , we can reference the 1D O(h2) approximation of the

second-derivative to find approximations in both the x and y directions for the second derivatives

at interior points:

∂2uij
∂x2

=
ui−1,j − 2ui,j + ui+1,j

h2
x

+O(h2) (1.1)

∂2uij
∂y2

=
ui,j−1 − 2ui,j + ui,j+1

h2
y

+O(h2) (1.2)

Assuming that hx = hy = h and combining these equations, we arrive at the following

6

approximation for the Laplacian, requiring five interior points:

∆uij ≈
ui−1,j + ui+1,j + ui,j−1 + ui,j+1 − 4uij

h2

Another way of representing this approximation to the Laplacian at interior points is through

the use of a graphical stencil. For example, in Figure 1.2, we show how we can approximate

the Poisson Equation and easily set up our matrix of coefficients at interior points via a stencil

(boundary points are handled differently for different boundary condition types).

1

1

1

1−4 ✉✐❥ ❂ ✭❤✷✮ ✄ ❢✐❥

Figure 1.2: Stencil for the 5-point O(h2) approximation to the Laplacian

For 3D, consider figure 1.3. In this figure, assume that the black point is the only point in

the interior of the domain Ω, and we are evaluating ∆u there. Again using a Taylor expansion,

we can quickly establish a scheme that is an O(h2) approximation. Similar to equations 1.1 and

1.2, define the operator, ∆ = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 when applied to u(x). Since we are in 3D, let

x = (x, y, z). Define Ω in 3D as (0, Lx)× (0, Ly)× (0, Lyz) and letNx, Ny, andNz be integers

defining how many sections we will discretize Ω into in the x, y, and z directions, respectively.

Let the step-size in the x-direction be hx = Lx/Nx, in the y-direction be hy = Ly/Ny, and in the

z-direction be hz = Ly/Nz such that the grid-points are defined as xi,j,k = (i∗hx, j ∗hy, k∗hz)

where 0 ≤ i ≤ Nx, 0 ≤ j ≤ Ny, and 0 ≤ k ≤ Nz . This is a direct evolution from 2D, and

the definition of the boundary follows directly. For ui,j,k, we can define all three parts of the

7

operator, ∆:

∂2ui,j,k
∂x2

=
ui−1,j,k − 2ui,j,k + ui+1,j,k

h2
x

+O(h2)

∂2ui,j,k
∂y2

=
ui,j−1,k − 2ui,j,k + ui,j+1,k

h2
y

+O(h2)

∂2ui,j,k
∂z2

=
ui,j,k−1 − 2ui,j,k + ui,j,k+1

h2
z

+O(h2)

③

①

②

Figure 1.3: Regular 3d grid, showing a single point in black with its 27 (including itself) sur-

rounding points, from which we can build anO(h2) orO(h4) finite-difference scheme, assuming

h = hx = hy = hz .

Letting hx = hy = hz , we can define anO(h2) convergent 7-point scheme for interior points

of our domain, Ω, and hence numerically approximate our Poisson equation, −∆u(x) = f(x)

as

6ui,j,k − ui−1,j,k − ui+1,j,k − ui,j−1,k − ui,j+1,k − ui,j,k−1 − ui,j,k+1

h2
= fi,j,k.

8

Higher-order finite-difference schemes can be taken into account by using additional points.

For example, in two dimensions, nine-pointO(h4) schemes can be built, as described in (Iserles,

1996). Similarly, 27-point schemes can be derived in three dimensions.

Regardless of the form of A, there is a long history of solving such systems of linear equa-

tions. This field is too dense to review here, but we discuss several of the more popular ap-

proaches in section A.5. For this problem, specifically with A built using one of these regular

stencils as above, however, knowing that A is a TST matrix, we can rewrite A as

Tuj−1 + Suj + Tuj+1 = bj , j = 1, ..., n.

The form of T and S are based on the chosen finite-difference schemes for the Laplacian

on rectangular grids. The matrices, S and T are also TST, for which we can write S and T

as (Iserles, 1996) S = QSΛSQ
T
S and T = QTΛTQ

T
T , respectively, where the matrices of

eigenvectors, eigenvectors have the form qj , qj,k =
(√

2
n+1

)
sin
(
πjk
n+1

)
. Since QS = QT = Q

where Q = QT , rewrite each row of the system of equations as

ΛT ûj−1 + ΛS ûj + ΛT ûj+1 = b̂j (1.3)

ûj = Quj , b̂j = Qbj , j = 1, ...n.

Let Û be the matrix whose jth column is ûj and let ûtj be jth column of ÛT , which is also

the jth row of Û . Indicate λSj as the jth eigenvalue of S, or the jth entry along the diagonal of

ΛS . Similarly, λTj is the jth eigenvalue of T . Let Γj be a TST matrix whose main diagonal is

filled by λSj and the first diagonals in both directions are filled with λTj . Rewrite equation 1.3 as

Γj û
t
j = b̂tj .

9

The main benefit of using row-wise operations is that we were able to construct a series of

systems of linear equations for each column of U , where this new system involves another TST

matrix (each Γj is TST), so we already know the eigenvalues and eigenvectors; however, as

suggested by (Iserles, 1996), the system is a tridiagonal banded system of linear equations. So,

if U is an n × n system, we can solve Γj û
t
j = b̂tj using band Cholesky (see section A.5.1) with

O(n) operations since the bandwidth is 1. This process is commonly referred to as the Hockney

method.

As Q is just a matrix of discrete sine transforms, matrix-vector multiplication with Q is sped

this up via FFTs, reducing an FFT solver to O(NlogN) operations, compared to a dense O(N3)

direct solver. We discuss FFTs and cyclic reduction further in section A.5.4.

Further examples of similar approaches to solving the Poisson equation using FFTs can be

seen in (Swartztrauber, 1984), and the Fortran algorithm (Swartztrauber and Sweet, 1979). The

latter is also available as part of the popular FISHPACK package, a publicly available collection

of Fortran codes. Along with FFTPACK, FISHPACK has been developed at NCAR (the National

Center for Atmospheric Research). FFTW (Frigo and Johnson, 1997) is currently the fastest

implementation (Frigo and Johnson, 1998; Frigo and Johnson, 2005) and has been incorporated

into a variety of packages, and is used in current research such as (Ying, 2004) for acceleration

of FFT-based aspects of elliptic PDE solvers.

Cyclic reduction (Buzbee et al., 1969; Buzbee et al., 1970; Swartztrauber, 1974; Swartz-

trauber and Sweet, 1996) is a generalization of the Hockney method for the FFT decomposition.

In regular geometries, variations of this method have been applied to the Poisson equation in

(Buneman, 1969; Buzbee et al., 1970; Buzbee et al., 1971). FFT-based methods, however, are

not as directly useful for irregular discretizations of a domain or when boundaries are complex.

10

1.2 Structured and Unstructured Grid Methods

For many problems, adaptive meshes resulting from adaptive mesh refinement (AMR) strategies

are essential (Berger et al., 1996; Aftosmis et al., 1998; Minion, 1999), and existing solvers

typically rely on domain decomposition strategies (Chesshire and Henshaw, 1991) or multigrid

acceleration (Chan and Smith, 1994; Hackbusch and Trottenberg, 1982; Johansen and Colella,

1998; Martin and Cartwright, 1996b). We discuss the general Multigrid Method approach in

more detail in section A.5.3.

For complex geometries, unstructured grid generation techniques are often used (e.g., (Mavrip-

ilis, 1997)), providing a way to increase grid resolution of a solution at points of interest. These

areas could include locations near high vorticity in vortex-based fluid solvers. Additionally, near

boundaries, it is often desirable for the grid to be more highly refined. In such cases, both the

grid generation process and the solution of the resulting linear systems can be computationally

expensive. The lack of regularity in the data structures adds complexities in parallelization as

well (Adams and Demmel, 1999; Chan and Smith, 1994).

One popular technique for local mesh refinement in areas of interest is Adaptive Mesh Re-

finement (AMR) (Aftosmis et al., 1998). Originally designed for inviscid compressible fluids

(Berger and Colella, 1989; Berger and Oliger, 1984), AMR has been extended to a variety of

situations for a variety of PDEs (Berger et al., 1996). In particular for our interest, AMR has

been utilized for solving the Poisson equation (Martin and Cartwright, 1996b; Martin, 1998) us-

ing multigrid acceleration (Hackbusch and Trottenberg, 1982; Hackbusch, 1985; Adams, 1998).

Specifically, (Martin and Cartwright, 1996b) has been built as an AMR Poisson code (Martin

and Cartwright, 1996a) as well as incorporated into the FLASH software package (Rosner et al.,

2000). Additional grid-methods for solving the Poisson equation include (Chan and Smith, 1994;

Johansen and Colella, 1998).

11

(Martin and Cartwright, 1996b) begin with the Poisson equation ∆u = f on some domain

Ω. The domain is discretized on a regular coarse grid, denoted by Ω0, which includes all of

Ω. The Poisson equation is solved on Ω0 and then areas of high error are located and resolved

locally there. We denote Ωl as the union of all areas of refinement at level l, where Γl is the

boundary of that level’s domain. Grids at different levels are not allowed to overlap here, such

that they are properly nested. Modifications can be made to remove this constraint. The result is

Ωlmax ⊂ ... ⊂ Ω2 ⊂ Ω1 ⊂ Ω0. An example can be seen in figure 1.4

Ω0

Ω3

Ω2

Ω1

Ω2

Ω4

Figure 1.4: Nested domains used in AMR-based computations

While maintaining a hierarchy of nested grids, it is also often necessary to pass informa-

tion between different grid levels. For this, a restriction (or projection) operator, R, restricts

information from a gridpoint in refinement level l to one in l − 1. Similarly, a prolongation (or

refinement) operator, P , refines information at points in refinement level l to a point in l + 1.

This is analogous to operators seen in the multigrid methods (section A.5.3).

For the interior of a refinement level, Ωl, it is straightforward to discretize the Laplacian there

12

if the grid structure is regular (for unstructured grids, use finite elements for building a system

of equations (Adams, 1998; Adams, 2004; Adams et al., 2004)).

At points which cross the boundary Γl, computing ∆h is more complicated. Figure 1.5,

provides two examples.

The full solver for this method involves a multigrid solver for refining the residual. The

process begins at the finest level, and then using this information to move along a V-cycle as

required to the coarsest levels and back; we introduce and discuss V-cycles in section A.5.3. In

(Martin and Cartwright, 1996b), great attention has to be paid to maintain consistencies between

the different refinement levels as the operators only apply to specific subdomains of the full

domain Ω. Once a solution is acquired, decisions are made as to whether more refinement is

required in a specific area.

When grids are unstructured, simple approximations to the Laplacian are not available, and

finite element methods need to be used (Adams, 1998; Adams and Demmel, 1999; Adams et al.,

2004); we review finite elements and how they can be used for discretization the operators,

specifically Laplace, in section A.4. This increases difficulties in generating hierarchies of grids

for using multigrid. As discussed in section A.5.3, coarse grids for multigrid are determined

from fine grids. When grids no longer have regular structure, building these grids becomes

complex. Geometric multigrid methods build coarse grids based on geometry information such

as spacing between grid points. Algebraic multigrid methods (Ruge and Stüben, 1987; Brez-

ina et al., 2004a) use coefficient-weighting techniques. Multigrid methods are based on using

solvers, which reduce residuals based on the directions of the strongest connections in the ma-

trices, i.e., the entries of each matrix with the largest possible value at a specific location. Coars-

ening and weight calculations for interpolation can be done during initialization often, leading

to good complexity for algebraic multigrid. (Adams et al., 2003; Brezina et al., 2004b) discuss

parallelization issues.

13

Figure 1.5: For approximating the Laplacian near boundaries, we need to use interpolation tech-

niques. On the left, approximation of the discrete Laplacian is at a point in Ωf , and on the right

at a point in Ωc. In both cases, approximation relies on points on the other side of Γf . On the

left, one is discretizing the Laplacian at a coarse grid, Ωc, which borders a finer grid, Ωf , with

boundary Γf . Computing the Laplacian at a point where a necessary neighbor crosses Γf is a

straightforward matter of interpolating fine grid values to the needed point or using the restriction

operator. For the image on the right, the Laplacian at the finer grid needs to be approximated, and

a point is necessary in Ωc for which we do not have values. In (Martin and Cartwright, 1996b),

quadratic interpolation is used to find values at the solid white point using known information at

the black points. The, another step of quadratic interpolation is used to obtain the information

at the cross-mark from the solid white point, now known, and the point inside of Ωf . Fine grid

corners involve additional steps as outlined in (Martin and Cartwright, 1996b).

14

A more recent class of methods combines ideas from potential theory with finite difference

methods. In (Greengard and Huang, 1999), fast direct solvers were used on a sequence of refined

grids with boundary conditions inherited from the coarser levels. This results in discontinuities

at coarse-fine interfaces which are corrected using a second pass through the grid hierarchy.

In (Balls and Colella, 2002), the method of local corrections (MLC) (Anderson, 1986) was

combined with multigrid methods to solve the Poisson equation on a hierarchy of nested grids.

The authors also showed how to impose free-space boundary conditions on the computational

domain. The fastest free-space Poisson solver for three-dimensional problems of which we are

aware is described in (McCorquodale et al., 2007). It solves local Poisson problems on fine

grids using FFT-based techniques and couples together the solutions on coarser grids using the

MLC. This approach was shown to be very effective in parallel, with good scaling up to 1024

processors. (A similar two-dimensional scheme is described in (Greengard and Lee, 1996)).

For unstructured meshes, the preceding methods don’t apply without significant modification

and most fast solvers are based on iterative methods using multigrid or domain decomposition

acceleration (Brandt, 1977; Chan et al., 1989; Briggs et al., 2000).

We mention additional grid methods. The Immersed Boundary Method (Peskin, 1977; Pe-

skin and McQueen, 1989; Peskin and Prinz, 1993) is a successful grid-based method, but the

accuracy is low for our needs, due to the way in which the interface is modeled with delta func-

tions. Another option is regular grids which use stencils to compensate for necessary jumps in

potential across boundaries (Berger and Colella, 1989; Liu et al., 2000; Cheng et al., 2001). This

avoids the necessity for keeping a hierarchy of grids. Unfortunately, for highly nonuniform force

distributions, we cannot rely on such grids where distributed forces are expected to be known ev-

erywhere. In three dimensions, grid-based methods become increasingly difficult even if forces

are uniformly distributed, and these methods can have difficulties for edges and corners in terms

of necessary refinement.

15

1.3 Fast Direct Solvers

Another approach is to incorporate fast direct solvers, which are efficient, scale well in parallel

and do not require maintaining a hierarchy of grids. In Section A.3, we describe how to formulate

fundamental solutions for certain problems such as the Poisson and Stokes equations. In general,

potential theory leads to a way of representing the potential, u, as a convolution of a density

distribution function with a kernel,G, representing the fundamental Green’s solution to a specific

PDE. That is, for an unbounded elliptic PDE,

L(u)(x) = f(x) supp(f) ⊂ Ω, (1.4)

where Ω is a bounded domain in Rd, and u(x) decays as 1/|x| at infinity, the integral equation

becomes

u(x) =

∫
Ω

G(x,y)f(y)dy

If the force is represented solely as singular sources, we represent this as a summation at n

discrete points

ui =

n∑
j=1

Gi,jfj .

Here, fj is a source density, given or interpolated at the n points (i.e., charge distribution

or vorticity field value for vortex methods (Majda and Bertozzi, 2002)). Rather than (1.4), for

example, the integral equation approach for the Poisson equation in three dimensions utilizes a

Green’s function of the form G(x,y) = 1/4π ||x− y|| and computes

u(x) =
1

4π

∫
Rd

1

|x− y|
g(y)dy. (1.5)

16

Among the advantages of this integral equation approach (or, more precisely, the integral

transform) is the increase in precision in computing derivatives. In PDE-based methods, if first

or second derivatives of the solution are needed, accuracy tends to degrade due to the need for

numerical differentiation. Instead, we can differentiate a kernel and compute derivatives from

their integral representation as well. Other advantages are that free-space radiation conditions are

automatically satisfied, we can obtain simple a priori error estimates, and high order accuracy

is straightforward to achieve. However, the computational complexity of a naı̈ve implementa-

tion is high: computing the solution u at N points x given N discretization points y requires

O(N2) work. There have been a number of methods proposed to overcome this barrier. These

include panel-clustering techniques (Börm and Hackbusch, 2005; Hackbusch and Nowak, 1989),

hierarchical matrices (H,H2-matrices) (Hackbusch, 1999; Hackbusch and Börm, 2002; Börm,

2006), the Barnes-Hut method (Barnes and Hut, 1986), and the Fast Multipole Method (FMM)

(Rokhlin, 1985; Greengard, 1988; Greengard and Rokhlin, 1997; Cheng et al., 1999), origi-

nally designed for gravitational/Coulomb interactions. These schemes all achieve linear O(N)

or nearly linear O(N logN) scaling. Most of these methods fall into the class of what are often

called tree codes because they separate near and far-field interactions on a hierarchy of spatial

scales using quadtree (2D) or octree (3D) data structures.

We begin by discussing the Barnes-Hut method for the purposes of introducing tree struc-

tures, and then we concentrate on the FMM. We also briefly discuss Particle-In-Cell methods.

1.3.1 Barnes-Hut Method

The Barnes-Hut Method (Barnes and Hut, 1986) is based on a simple idea. Imagine we are

trying to calculate the gravitational force exerted on Earth by a group of planets and stars; this

force is based on the relative masses of other planets and their distances from Earth. Now,

imagine that a group of planets in some galaxy are close together but very far away from Earth.

17

Due to the fact that we are using numerical techniques to make our calculations, the difference

between calculating the distance between all of these planets individually versus treating them as

one mass and using a single distance calculation to calculate the relative force may be minimal.

However, this can result in a significant savings computationally.

We can formalize this idea using figure 1.6. Imagine Earth is at a distance r from the center

of mass of Galaxy Y, which can be grouped into a box with widthD, and all of the planets, except

for a single one in Galaxy Y can be separated into a group of planets, designated as Galaxy Z of

size D1 and the single planet. Consider the ratio D
r . If this ratio is below some threshold, treat

the planets as a single mass there in order to calculate r. If D1
r1

is small, do the same. So, imagine

these two ratios are small enough such that the center of mass of Galaxy Y is calculated as the

average of center of mass of Galaxy Z, influenced by its total mass plus the center of mass of the

other isolated planet. Then, r is the distance between Earth and Y’s center of mass.

Figure 1.6: Using the relationships between galaxy sizes and relative distances, we can determine

whether to use direct summations or far-field techniques.

We can continue recursively subdividing the space as necessary in order to separate and clus-

ter planets and galaxies. To better understand how to represent the separations and clusterings,

18

we turn to quadtree and octree data structures for two and three dimensions, respectively.

Quadtrees and Octrees

A quadtree is a search tree data structure for two dimensions where each node has at most

four children. An octree is a tree data structure in three dimensions, where each node in the

tree has at most eight children. For simplicity, quadtrees are mainly considered. The root of a

quadtree points to an entire domain, Ω. For example, as in figure 1.7, reproduced from (Demmel,

1996), consider Ω is a unit square.

Figure 1.7: An example full, non-adaptive quadtree. The root of the corresponding quadtree

stores information about the entire domain. Then subdivide Ω into four smaller domains (squares

of equal size for our example), such that the four nodes in the second level of the quadtree store

information about these four subdomains. Continue this recursively as shown such that the leaves

of the quadtree correspond to the levels at which subdivision ceases. We can use this quadtree

data structure to subdivide Ω until each of the smallest domains store the location of one or more

particles.

Imagine we wish to subdivide some domain such that each leaf of a quadtree points to a

subdomain which contains a single particle. In figure 1.8 we show a unit square domain with

a small number of non-uniformly distributed particles. Instead of a uniform subdivision, the

19

domain is subdivided such that the result is a nonuniform adaptive quadtree. The first child node

of any subtree in the quadtree points to the upper-right subdomain and then counter-clockwise,

as in the Cartesian coordinate system.

Figure 1.8: A unit square domain with a small number of randomly non-uniformly distributed

particles. The resulting unit square with non-uniformly distributed particles is subdivided down

to the level of a single particle enclosed by a single subdivided cell. The adaptive quadtree ab-

stract data structure is shown to the right. Black squares represent interior nodes which point

to their children. White circles represent leaves which point to the location of a single particle.

Black triangles represent subdivided cells which point to an empty cell with no particles or chil-

dren (a leaf with no particles). Typically, we would not store these nodes, instead representing

them as null.

An optimal quadtree has height ofO(log4 n). So, the cost of building the quadtree isO(n log4 n)

for a uniformly-distributed set of particles. We now need to be able to use the tree to calculate the

forces. For the gravitational force example, we describe how to calculate the center of mass for

each cell in the quadtree and then use this to calculate the forces. First, however, we explain how

the above ideas are straightforwardly extended to three-dimensions using octrees. For an octree

data structure, each interior node will have eight child nodes. A simple explanatory picture can

be seen in figure 1.9, showing a simple 3D unit box and the resulting two-level non-adaptive

20

octree.

Figure 1.9: A simple two-level uniform octree.

The basic format for the Barnes-Hut Algorithm is as follows. Given a domain and n particles,

• Build the quadtree or octree as shown in the last section;

• Traverse the tree to compute the center of mass and total mass at each node in the tree;

• For all n particles, traverse the tree, computing the force particle-particle or particle-box

as necessary.

We have already shown how to do the first step, and we now show how to do the second step.

Assume mass is carried by each particle. We could also use charge distributions for problems in

electrostatics or vorticity field values. The following approach allows us to compute the center of

mass and total mass at each node in the tree. We show how this is done for a quadtree; extension

to octrees is straightforward.

Computing the center of mass for each node in the tree involves a straightforward postorder

traversal, computing the total mass and center of mass at every tree node along the way. To

compute the total force for every particle in the tree, traverse the tree again in postorder fashion

and calculate the distance, r from the particle to the center of mass of some node. Then, the

21

force between the particle i and the total mass at at box Q’s center of mass could be calculated

by denoting i’s mass as mi and Q’s total mass as mQ and using the formula in 3D (G is a

constant):

fi = Gmi

(
xcm − xi

r3
,
ycm − yi

r3
,
zcm − zi

r3

)
We have the basic components for computing the total force at a particle. Two types of

interactions are necessary: a particle-particle interaction (near-field) when particles are close

together and a particle-node interaction (far-field) when a particle is far from a group of planets.

For this, we say if D
r < θ, where θ is a preset value, use a node’s center of mass and total mass

instead of continuing to traverse that subtree for the force calculation.

Instead of gravitational forces, one can obviously use the fundamental solutions to the Laplace

and Poisson equations to compute electrostatic potentials.

It can be proved that for appropriate distribution of particles and θ not too small, the running

time to compute the centers of mass and then compute the forces is O(n log4 n). Barnes-Hut is

easy and fast to code, and we have done so for 2D and 3D for the purpose of vortex methods.

Unfortunately, controlling the parameters for guaranteeing a certain level of accuracy in Barnes-

Hut is not always straightforward (Salmon and Warren, 1994). For more control in error bounds

in solutions to n-body problems, the Fast Multipole Method provides a better option.

1.3.2 Fast Multipole Methods

Because it can achieve arbitrary precision at modest cost with straightforward error estimates,

we concentrate on the Fast Multipole Method (FMM) in the present setting. The classical FMM

is kernel-specific and relies on detailed separation of variables solutions of the governing PDE

(Greengard and Rokhlin, 1987), and we review this original approach in more detail in sec-

tion 2.1.

22

While the original FMM considered the Laplace equation, the Helmholtz equation was sub-

sequently treated in (Rokhlin, 1990). A three-dimensional version effective for all frequencies

(and additional references) can be found in (Cheng et al., 2006a). The modified Helmholtz equa-

tion was discussed in (Boschitsch et al., 1999; Greengard and Huang, 2002), and the biharmonic

equation in (Greengard et al., 1996; Gumerov and Duraiswami, 2006; Wang et al., 2007). The

Stokes equations are somewhat exceptional, since they can be handled by a sequence of calls to

the original (Coulomb) FMM (Y. Fu, 2000; Tornberg and Greengard, 2008). An attractive alter-

native that avoids much of the detailed analytic work of these methods is the kernel-independent

approach of (Ying et al., 2003; Ying et al., 2004b; Lashuk et al., 2009). In this approach, ex-

pansions in special functions are replaced with equivalent source densities. The result is that the

same numerical apparatus can be used for a variety of PDEs, and the user need only supply a

subroutine for the evaluation of the relevant Green’s function. We review this kernel-independent

approach in more detail in section 2.2.

FMM-based solvers have been used for a variety of purposes in two dimensions. In (Green-

gard and Lee, 1996), FMM methods are developed for high-order accuracy in unbounded space.

The authors of (Russo et al., 1994; Strain, 1997) use adaptive FMM grids and triangulation for

solving vortex-based fluid problems.

While the bulk of the work on FMMs over the last two decades has concentrated on particle

interactions or the acceleration of boundary integral equation methods, there has been some work

on solving inhomogeneous PDEs. One option is to couple the FMM with finite difference meth-

ods to allow for fast solvers in complex geometry (Mayo, 1985; McKenney et al., 1995; Ying

et al., 2004a). While this is a significant improvement in terms of range of applicability over

classical fast solvers, these methods require a regular volume mesh on which is superimposed an

irregular boundary. Adaptive FMMs for volume source distributions in two dimensions were de-

scribed in (Cheng et al., 2006b; Ethridge and Greengard, 2001; Greengard and Lee, 1996). The

23

present work extends these two-dimensional schemes to three dimensions, incorporates them

into kernel-independent FMMs, and introduces several new performance optimizations. The

result is an efficient, adaptive method that is capable of computing volume integrals in three di-

mensions for a broad variety of PDE kernels. We provide more background on these approaches

in section 2.3.

It is also worth noting that there has been a significant body of work in the quantum chemistry

community on accelerating volume integral calculations using the FMM, where collections of

Gaussians are typically used to describe the charge distribution (White et al., 1994; Strain et al.,

1996). These are Poisson problems in free-space but with a different approach to defining the

right-hand side.

1.3.3 Particle-In-Cell Methods

We briefly discuss a class of methods known as Particle-In-Cell (PIC), or Particle-Mesh (PM)

methods. PIC methods are often seen in simulations of particles that are advected through some

domain. A common example includes vortex methods for simulating fluids (Cottet and Koumout-

sakos, 2000). Another example is simulating electrostatic fields with particles and Maxwell’s

equations, using the Biot-Savart Law for the summation of potentials from charge distributions

(Gibbon and G.Sutmann, 2002). These methods incorporate an Eulerian method for solving the

necessary equations and Lagrangian techniques to advect particles through the domain. The spe-

cific differences for different PIC methods are in how mesh values are transferred to particles

and how particle values are mapped back to the mesh. Specifically, given density values, qj for

some particle, j, compute the density ρ at some location x as follows

ρ(x) =

Ncell∑
j=1

qjW (x− xj),

24

where Ncell is the number of cells, and W is a weighting function with compact support. Typi-

cally, there are many particles per mesh-grid cell so that the density on the mesh is interpolated

smoothly. If the Poisson equation is being solved, a fast FFT-based solver could be employed.

Then, use the same function, W , to interpolate the potentials back to the particles. A common

weighting function is the Cloud-In-Cell (CIC) function, which in 1D looks like

Wcic(x) = 1− |x|, |x| < 1.

The effect of this function is that it acts like the hat-function seen in finite elements. In 3D,

the CIC function takes the form of Wcic(x) = Wcic(x)Wcic(y)Wcic(z).

One large problem with the PM method is that since they interpolate all particles in a cell to

the grid and then back, near-field interactions are all but lost. This technique is good for long-

range simulations, but we care about close interactions of particles. One idea is to combine the

fact that PM performs well for far-field interactions and employ a different approach for eval-

uating near-field interactions between particles. One possible solution is the Particle-Particle,

Particle-Mesh Method (P 3M) (Gibbon and G.Sutmann, 2002).

The idea behind P 3M is to break the potential for each particle into two parts, just as in the

FMM method. That is, for the jth particle, let its total potential be uj where

uj = uPPj + uPMj .

The PM-part, uPMj can be computed as before, and uPPj is computed as a particle-to-particle

summation, where we choose some radius r around uj to locate particles. There are several

points which must be addressed, however. First, if the area of the PP interactions is too large, too

many direct summations are computed, which is computationally expensive. On the other hand,

if the area is too small, some of the near-field effect is lost, which defeats the purpose of using

P 3M . Another problem is that where the PM and PP calculations meet, they have to agree. The

25

matching of the forces can be done during the regular PM calculation (Hockney and Eastwood,

1981; Gibbon and G.Sutmann, 2002).

PIC methods provide an alternative to FMM; however, the P 3M method or some variant is

necessary for high-accuracy, and even then, accuracy can be difficult to gauge as choosing the

near-field radius for the PP calculations takes some finesse (Hockney and Eastwood, 1981) while

FMM guarantees desired accuracy. Further, PIC methods only work for bounded space, working

best for periodic domains (Gibbon and G.Sutmann, 2002); whereas, we are interested in solving

problems in unbounded space, for which PIC methods are not useful. Further, as stated, PIC can

be used for vortex methods, but others have found that fast methods such as adaptive FMM are

better for the calculation of force for each particle (Russo et al., 1994; Strain, 1997).

Finally, we state that one method that often sees consideration is Smoothed Particle Hydro-

dynamics (SPH) (Lucy, 1977; Gingold and Monaghan, 1977; Monaghan, 1992). SPH is a purely

Lagrangian formulation, where particles carry all physical properties of a material; this is some-

times used in fluid simulations. Smoothing kernels are used to interpolate potentials or forces

and particles are advected as in PIC methods. Each particle is given its own smoothing length,

h, in lieu of using a grid, and they are allowed to vary over time. SPH drawbacks include the fact

that energy can often be allowed to dissipate, so care needs to be taken in varying the particle

lengths, and error estimates are often difficult to calculate. Additionally, the smoothing kernel

is designed to calculate the influence only for nearby particles, so in effect, far-field interactions

are not taken into account. This can be compensated for by increasing the radius of influence;

however, this increases computation time such that SPH methods fail to remain competitive,

especially in the face of their numerical deficiencies.

26

1.4 Embedded Boundary Solvers

We have looked at FFT techniques for problems in simple domains as well as fast summation

techniques for problems in unbounded domains. However, neither of these are particularly useful

on their own since we want to be able to solve more complicated problems such as those in figure

1. One approach is an Embedded Boundary Integral approach as in (Ying et al., 2004a).

For example, for an interior Dirichlet Poisson problem of the form

−∆u = f in ω (1.6)

u = g on γ,

such as in figure 1, the idea is to embed ω in a simpler domain and solve two PDEs: one with

body forces and a simple domain and one absent body forces (homogeneous) with a complex

domain whose boundary values are altered by the first PDE. This approach can be seen in (Mayo,

1984; Mayo, 1985; Mayo and Greenbaum, 1992; McKenney et al., 1995). This Embedded

Boundary Method approach is discussed in greater detail in Chapter 4.

For the regular-grid solver, (Ying, 2004) uses FFT methods, assuming that the body force

is available everywhere. The same is true for (Mayo, 1985; McKenney et al., 1995). This in-

corporates the homogeneous boundary conditions; however, one could also use volume integrals

methods as discussed in Chapters 2 and 4, allowing for adaptivity and non-uniform source dis-

tributions in the volume solver.

1.5 Overview of Thesis

For simple geometries and well-known body forces, we have discussed how FFT-based methods

perform well. For more complicated geometries, adaptive grid-based techniques such as AMR

27

provide an alternative approach, and is a promising area of research, especially with algebraic

multigrid for unstructured grids; these methods, however, require a hierarchy of coarse to fine

grids, and these grids can be computationally intense to compute and parallelization is necessary

to obtain good time complexity. The embedded boundary integral approach, on the other hand,

holds an opportunity to incorporate existing fast summation methods, of which FMM provides

the best accuracy and flexibility.

We have modified the kernel-independent FMM to incorporate for non-uniform force distri-

butions in complex domains. Using the Embedded Boundary Integral approach, this will allow

for the solving of the Poisson equation in complex smooth geometries in 2D and 3D. For the

fast volume solver, we introduce in Chapter 2 a kernel-independent free-space volume solver,

using precomputed interaction weights and symmetry techniques. We further discuss how to

extend this solver to periodic or Dirichlet boundary conditions in the box. In Chapter 3 we look

at numerical results for these volume solvers for a variety of PDEs.

In Chapter 4, we discuss how we incorporate our fast volume solver into an embedded bound-

ary solver technique, including a pre-existing boundary integral method such that we can solve

arbitrary elliptic PDEs in complex domains with volume forces giving only in the interior of our

domain in a possibly non-homogeneous distribution. Chapter 5 looks at numerical results for

several complex geometries and force distributions.

28

2
FMM-BASED KERNEL-INDEPENDENT 3D

VOLUME SOLVER

In free space, linear constant-coefficient PDE solutions can be expressed directly in an integral

form; that is, for a given location, the solution of the equation can be evaluated as a convolution

of the volume force with a specific Green’s function. By taking advantage of smoothness of

the kernel functions, Fast Multipole Method (FMM) algorithms (Greengard and Rokhlin, 1987;

Beatson and Greengard, 1997; Ethridge and Greengard, 2001) are able to significantly decrease

complexity costs. In particular, the kernel-independent FMM (Ying et al., 2003; Ying et al.,

2004b) makes it possible to efficiently solve any free-space PDE for which a smooth kernel

evaluation function is provided. For example, given a linear, constant-coefficient PDE

L(u)(x) = g(x), (2.1)

classical mathematical methods can be used to compute the corresponding Green’s function

K(x,y) in free space such that

u(x) =

∫
Ω
K(x,y)g(y)dy , (2.2)

where Ω is the support of g. K(x,y) is in general weakly singular; assuming g(x) is given at

N points and u(x) is desired at N points, the non-local character of the integral representation,

as indicated above, would lead to an O(N2) solution procedure. Thus, we need both a suitable

quadrature approach and a fast algorithm for (2.2) to yield a useful numerical technique. Assum-

ing this is achieved, a number of advantages follow. First, no linear system needs to be solved;

adaptivity is achieved by using adaptive quadrature. Second, as mentioned earlier, first deriva-

tives can be computed without loss of precision (higher-order derivatives are possible but it may

29

be harder to achieve the same degree of accuracy due to increase in the order of singularity that

needs to be integrated); the gradient of (2.2) becomes

∇u(x) =

∫
Ω
∇K(x,y)g(y)dy. (2.3)

Third, we have simple a priori error estimates. Let ĝ(x) be the approximation to g(x), and

Q̂[g](x) denote the quadrature approximation of
∫

ΩK(x,y)g(y)dy, with an error estimate of

the form

∣∣∣∣Q̂[g](x)−
∫

Ω
K(x,y)g(y)dy

∣∣∣∣ ≤ ε‖g‖1, (2.4)

where ‖g‖1 =
∑

i |gi| from sampled source locations, and the parameter ε in our case is the

FMM approximation error estimated as in (Ying et al., 2004b). Let

û(x) = Q̂[ĝ](x). (2.5)

Then

e(x) = u(x)− û(x) =

∫
Ω
K(x,y)g(y)dy −

∫
Ω
Q̂[ĝ](x)

≤
∫

Ω
K(x,y)[g(y)− ĝ(y)]dy +

∣∣∣∣∫
Ω
K(x,y)ĝ(y)dy − Q̂[ĝ](x)

∣∣∣∣
≤ C1‖g(y)− ĝ(y)‖∞ + ‖ĝ(y)‖1 ε,

where C1 = max
x

∫
Ω
|K(x,y)|dy. (2.6)

The estimate above is much sharper than one typically obtains when discretizing the PDE

itself, where the order of accuracy is determined by high derivatives of the solution. Here, it

depends only on the quality of the approximation of the right-hand side. In particular, a kth-order

polynomial approximation leads to a kth-order accurate scheme with a very small constant. (C1

is a bounded quantity determined by the volume of Ω with no dependence on the data.)

30

Again, the principal drawback is that, when implemented naı̈vely, the complexity of the

approach is quadratic in the number of sample points. FMM algorithms overcome this computa-

tional barrier by making systematic use of the smoothness of distant interactions on a hierarchy

of spatial scales. The kernel-independent versions of the FMM are particularly useful in their

generality; they make it possible to compute solutions of the form (2.2) for any (non-oscillatory)

elliptic PDE, provided only a module which evaluates the kernel exists.

After describing the details of the approach, we demonstrate its performance for the Poisson

equation (2.7), the modified Helmholtz equation (2.8), and the Stokes equations (2.9):

−∆u(x) = g(x), (2.7)

αu(x)−∆u(x) = g(x), α > 0, and (2.8)

∇p(x)− µ∆u(x) = g(x), ∇ · u(x) = 0. (2.9)

with corresponding kernels in three dimensions given by

K(x,y) =
1

4πr
, (2.10)

K(x,y) =
1

4πr
e−
√
αr, and (2.11)

K(x,y) =
1

8πµ

(
1

r
I +

r⊗ r

r3

)
, respectively. (2.12)

We use an adaptive piecewise polynomial force approximation, discussed in detail in sec-

tion 2.4. As the input for our algorithm, we assume a smooth force is given as discrete point

sources, which can in turn be approximated locally as polynomial coefficients. This approxima-

tion can be constructed from other types of force representations as long as the forces can be

evaluated at grid enough locations with sufficient accuracy (Langston et al., 2011).

31

We begin by reviewing the analytic FMM in section 2.1, the kernel-independent FMM in

section 2.2, the motivation for using FMM for a volume solver in section 2.3 for one and two

dimensions, and discussion of the kernel-independent volume solver in section 2.4.

2.1 Analytic Fast Multipole Method

To establish terminology and notation, we summarize the structure of the original two-dimensional

FMM for the Poisson equation (Greengard and Rokhlin, 1987). Given a force distribution g at

Nsrc source locations, we wish to compute the induced potentials uj atNtrg target locations, xj :

uj = u(xj) =

∫
R2

K(xj ,y)g(y)dy ≈
Nsrc∑
i=1

K(xj ,yi)g(yi)wi , j = 1, . . . , Ntrg , (2.13)

where K(x,y) = − log | {x− y} |/2π and wi is a quadrature weight associated with source

location yi. For Nsrc ≈ Ntrg ≈ N , the FMM decreases the computational cost from O(N2)

to O(N) for a fixed user-prescribed level of accuracy. It does so by introducing a hierarchical

quadtree partition of a bounding square D, enclosing all target and source points, and two series

expansions for each box at each level of the hierarchy. More precisely, the root of the tree is

associated with the squareD and referred to as level ` = 0. The boxes (squares) at level l+1 are

obtained recursively, subdividing each box at level l into four squares, referred to as its children.

For a box B of diameter H , its near fieldNB is defined to be the set of all boxes in D contained

inside a box centered at B of width 3H . The neighbor list LBN of a box B is defined to be the set

of boxes sharing a vertex with B that are elements of NB; in the nonadaptive case, LBN = NB .

The far field of B, denoted FB , is the complement of near field: FB = D \ NB . Finally, the

interaction list of box B, denoted by LBI , is defined to be the children of B’s parent’s neighbors

that are not neighbors themselves. Thus, LBI ⊆ FB . An example of a uniformly refined 2D

domain and quadtree structure is shown in Figure 2.1. The depth of the tree is chosen so that

the smallest boxes (leaf nodes in the tree structure) contain no more than some fixed number of

32

points, say s. For simplicity, we first consider uniformly refined trees, where all leaves in the

tree structure are at the same level. Let us note that the total number of boxes in the quadtree

is bounded by 4N/3s (8N/3s in three dimensions). Thus, if the workload per box is constant,

then the net algorithm has O(N) complexity.

B

iii

i i i i

i

i

i i

i

i

ii

i

i i i i

i

i

i

i

ii

i

n

n

n n n

n

nn

Figure 2.1: On the right is shown a domain which has been fully subdivided three times, resulting

in a quadtree on the left. The root of the tree represents the entire domain at level 0. The non-leaf

nodes at level 1 of the quadtree represent the four boxes on the right enclosed by the thickest

black lines. The right image shows the neighbor list LBN for the box B (boxes marked with n on

the grid, light gray in the tree), and LBI (boxes marked with i on the grid, dark gray in the tree).

Here, NB = LBN and FB = (D ∪ LBI) \ NB .

Two types of series are associated with each box B in the hierarchy:

• The multipole expansion is defined as follows. Suppose m source densities φj at zj are

located inside a circle of radius R with center z0 (i.e., |zj − z0| < R). For all z outside of

the circle with radius r (i.e., |z − z0| > r, r > R), approximate the potential u(z) as:

u(z) = a0 log (z − z0) +

p∑
k=1

ak
(z − z0)k

+O

(
Rp

rp

)

33

where the coefficients, ak for 0 ≤ k ≤ p, satisfy

a0 =

m∑
j=1

φj and ak =

p∑
j=1

−φj(zj − z0)k

k
.

The coefficients, {ak} represent the multipole expansion.

• The local expansion is defined as follows. Supposem source densities φj at zj are located

outside of the circle of radius r with center z0 (i.e., |zj − z0| < R). For all z inside of the

circle with radius R (R < r), approximate the potential u(z) as:

u(z) =

p∑
k=0

ck(z − z0)k +O

(
Rp

rp

)
where the coefficients, ck for 0 ≤ k ≤ p, satisfy

c0 =

m∑
j=1

φj log (z0 − zj) and ck =

m∑
j=1

−φj
k(zj − z0)k

.

The coefficients, {ck} represent the local expansion. For both expansions, p is chosen for

the desired accuracy. As in Barnes-Hut, the domain is subdivided recursively: Imagine a unit

square in two dimensions, and we subdivide our space hierarchically using a quadtree structure

where leaves of the quadtree contain a maximum number of points, prespecified as some value

s (this was set to 1 in the Barnes-Hut examples discussed earlier). For each cell in the quadtree,

represent the potential in the box as a result of the sources in that cell via a multipole expansion.

The potential in the box from sources in non-adjacent cells is represented as a local expansion.

The FMM computes the total field at a target point in leaf box B as the sum of (a) the field

due to the source points contained in the boxes of the neighbor list LBN and (b) the contribution

from sources in the far field FB . The contributions from source points inside the boxes of LBN

are computed directly using (2.13), while the contributions from FB are obtained by evaluating

the local expansion of box B at the target.

34

All of the tools exist for an O(n log n) method, but one can do better using translation

methods (Beatson and Greengard, 1997) defined as follows.

M2M or Multipole to Multipole Translation turns the multipole expansions of a box’s

children into its own multipole expansion. Suppose zS is the center of a box whose parent

has center zM , and that the sequence {ak} represents the multipole expansion at zS . Write the

multipole expansion at zM as

u(z) = b0 log (z − zM) +

p∑
l=1

bl
(z − zM)l

+O(ε),

where bl for 0 ≤ l ≤ p is defined using zS’s multipole expansion,

b0 = a0 and bl = −a0(zS − zM)l

l
+

l∑
k=1

ak(zS − zM)l−k
(
l − 1

k − 1

)
.

M2L or Multipole to Local Translation turns the multipole expansions of a box into the

local expansion of non-adjacent box. Suppose zM and zL are the centers of two boxes which are

non-adjacent, and they are at the same refinement level in the hierarchy (i.e, same level in the

quadtree). If {bk} is the multipole expansion at zM , write the local expansion at zL as

u(z) =

p∑
l=0

cl(z − zL)l +O(ε),

where cl for 0 ≤ l ≤ p is defined using zM ’s multipole expansion

c0 = b0 log (zL − zM) +

p∑
k=1

(−1)kbk
(zM − zL)k

, and

cl =
b0

l(zM − zL)l
+

1

(zM − zL)l

p∑
k=1

(−1)kbk
zM − zL

k(
l + k − 1

k − 1

)
.

L2L or Local to Local Translation turns the expansion expansions of a box’s parent into

its own local expansion. Suppose that zT is the center of a box and zL is the center of its parent

and that {cl} represents the local expansion at zL. Write the local expansion at zT as

u(z) =

p∑
l=0

dl(z − zT)l +O(ε),

35

where dl for 0 ≤ l ≤ p is defined using zT ’s local expansion

dl =

p∑
k=l

ck

(
k

l

)
(zT − zL)(k−l).

Figure 2.2 provides an example of moving between expansions for a series of points.

M2M

M2L
L2L

③▼

③❙

③❚

③▲

Figure 2.2: Example of expansions and translations. zS indicates an encoding of the source

points in its cell (small squares), and zT indicates an encoding of the far-field influence to the

target points (small triangles). M2M, M2L and L2L indicate the appropriate translations as

defined.

In Barnes-Hut, forces were computed by starting at the coarsest point in the quadtree hi-

erarchy and moving towards the coarsest level. The same is true for an O(nlogn) multipole

algorithm (Beatson and Greengard, 1997). For the O(n) FMM, start at the finest level and move

upwards then downwards. The essential task of the FMM is the construction of the local expan-

sions in a hierarchical manner. This takes place in two steps.

The upward pass. This pass begins at the finest level of the tree data structure, converting

force values at source points to multipole expansion coefficients for each leaf box; this compu-

tation is carried out by the source-to-multipole (S2M) operator, a p× sB matrix, where sB is the

number of source points in B. The multipole coefficients for coarser level boxes are obtained

recursively, mapping coefficients of multipole expansions with respect to children’s centers to

the multipole expansion with respect toB’s center. This map, the multipole-to-multipole (M2M)

operator, is linear and given by a p× p matrix for each child.

36

The downward pass. This pass starts at the coarsest level of the tree. For each box B, the

local expansion of the far field is obtained by first shifting the local expansion of B’s parent to

the center of B. The mapping which carries this out is a p × p matrix referred to as the local-

to-local (L2L) translation operator. We then need to add the contributions from the multipole

expansions centered at each of the boxes inB’s interaction list LBI . It is straightforward to check

that these contributions are exactly the difference between the far field of B and the far field

of B’s parent. For each box in LBI , one converts its multipole expansion to a local expansion

centered in B. This mapping from the vector of multipole coefficients ak to the vector of local

expansion coefficients ck is referred to as the multipole-to-local (M2L) translation operator. It is

also linear and given by a p × p matrix. It is easy to see that the work per box in both upward

and downward passes is constant.

At the end of the downward pass, local expansions are available in each leaf node. These

can then be evaluated at each target point. We refer to the evaluation of the local potential as the

local to target (L2T) translation operator; if the number of target points in a box is tB , then the

L2T operator is given by a p× tB matrix.

To summarize, the FMM uses S2M , M2M , M2L, L2L and L2T linear operators, each of

which is represented by a matrix. For the M2M and L2L operators, each matrix is determined

uniquely by the relative position of a box and its parent - there are 4 such matrices for quadtrees

and 8 for octrees. For M2L operators, each matrix corresponds to the relative position of a

box in the interaction list - there are 27 such matrices for quadtrees and 189 for octrees. These

numbers can be considerably reduced by taking advantage of symmetries, a topic we will return

to later. The S2M and L2T operators depend on source and target point locations, and can be

different for each box.

Algorithm 1 outlines the basic FMM, omitting the technical details. For fixed s and p, the

computation is constant-time per box, leading to an O(N) method overall. Figure 2.3 illustrates

37

the data flow involved in the M2M , M2L and L2L operators.

Algorithm 1 Non-Adaptive Analytic FMM
STEP 1 - CONSTRUCT TREE T AND LISTS

build T such that each leaf B contains at most s points

for each box B in preorder traversal of T do

build list of nearest neighbors, LBN and interaction list, LBI

end for

STEP 2 - UPWARD PASS

for each box B in postorder traversal of T do

if B is a leaf box then

Construct multipole expansion from all sources using S2M operator

else

Construct multipole expansion from children using the M2M operator

end if

end for

STEP 3 - DOWNWARD PASS

for each box B in preorder traversal of T do

Compute the contribution to B’s local expansion from its parent’s local expansion using the L2L operator and

from LBI list using the M2L translation operator

end for

for each leaf box B in T do

Compute the potential at each target location from B’s local expansion using the L2T operation and from LBN

using direct calculations

end for

For the Laplace kernel, 1/r, in three dimensions, far-field expansions are represented us-

ing spherical harmonics (Greengard and Rokhlin, 1988) rather than Laurent series in the ana-

lytic FMM. Significant speedups can be obtained by using plane-wave representations as well

(Greengard and Rokhlin, 1997).

We next discuss how the work of (Ying et al., 2003; Ying et al., 2004b) adapts the above

38

M2M

C

BP

L2L

B

V

B

M2L

Figure 2.3: Boxes used by M2M, L2L and M2L operators. For box B at level `, P in the L2L

operator represents the parent of B at level ` − 1, and in the M2M operator, C represents the

children of B at level `+ 1. Boxes labeled V in the M2L operator reside in LBI .

algorithm into a kernel-independent FMM, one for which the kernel routine is assumed to be

in black-box form only, allowing for multiple kernels to be used without changes to the basic

design of the algorithm.

2.2 Kernel-Independent FMM

We provide some background for the original kernel-independent FMM, largely for two dimen-

sions, reserving the majority of the discussion for section 2.4. The kernel-independent FMM

(Ying et al., 2004b) is similar to the original FMM, where the main difference is in the repre-

sentation of the densities, and how the translations (M2M, M2L, L2L) are computed. Instead

of using the analytic expansions for potentials from the densities in a box, B, in the quadtree or

octree, an equivalent density is computed at a surface enclosing B. This surface is a circle in 2D

or a sphere or cube in 3D. For example, using the notation of (Ying et al., 2004b), yB,u is the

upward equivalent surface of B, and yB,d is the downward equivalent surface of B. yB,u must

be chosen such that it encloses B but does not overlap with B’s far-field. B’s source densities

39

are represented on the equivalent upward surface by φB,u. The authors show that the potential

generated by the original source densities is equivalent to the potential generated by the upward

equivalent density, φB,u, by using an upward check surface, xB,u whose potential is called the

upward check potential, qB,u. The equality of the potentials for the original source densities

versus the equivalent densities, assuming the correct construction of these equivalent densities,

is shown by the following equation (Ns is the total number of source points in B):

B,u∫
y

G(x,y)φB,udy =

N=Ns∑
i

G(x,yi)φi = qB,u, x ∈ xB,u

Equivalent constructions are made for the potential generated from source densities in B’s

far-field using downward equivalent surfaces and check surfaces. The basic idea is shown in

figure 2.4, reproduced from (Ying et al., 2004b).

40

Figure 2.4: The left picture represents the calculation of the potential generated from B’s local

source densities. First, the potential at the upward check surface, the dashed line, is computed,

and then this is used to compute the equivalent densities on the upward equivalent density sur-

face, the solid line. The potential in B from its far-field is generated by using the equivalent

densities on the downward equivalent surface, the solid line. First, the potential induced by the

far field source densities is computed at the downward check surface, the dashed line, and this

potential is used to compute the equivalent downward density.

Using the equivalent densities, the authors are now able to alter the multipole translations to

be more efficient, and kernel-independent. The M2M translation from a child box A to its parent

B by solving for the equivalent density φB,u is

∫
yB,u

G(x,y)φB,udy =

∫
yA,u

G(x,y)φA,udy, x ∈ xB,u.

For the M2L translation, if A is now a box in the far field of B, we solve for φB,d,∫
yB,d

G(x,y)φB,ddy =

∫
yA,u

G(x,y)φA,udy, x ∈ xB,d.

For the L2L translation, if A is now the parent of B, we solve for φB,d,

∫
yB,d

G(x,y)φB,ddy =

∫
yA,d

G(x,y)φA,ddy, x ∈ xB,d.

41

Stability and accuracy considerations for this method and requirements on the placement of

the surfaces are detailed in (Ying, 2004); however, for better understanding, we reproduce figure

2.5 in order to illustrate the basic idea of how the translations work between equivalent surfaces

and equivalent check surfaces.

42

Figure 2.5: Using the same definitions for the solid lines, dashed lines, solid circles and empty

circles, the left figure represents a graphical interpretation of the M2M translation, the middle

the M2L translation and the right the L2L translations for the kernel independent FMM.

The location of these circles in 2D and boxes in 3D are further discussed in (Ying, 2004),

such that appropriate stability is achieved in the potential evaluation and solving of the necessary

integral equation.

As before, NB is the set of all of B’s neighbors, LBN is the list of neighbors of B, adjacent

boxes to B at the same refinement level such that LBN ⊂ NB , and LBI is the interaction list,

children of B’s parent’s neighbors which are not in NB; LBI ⊂ FB , the far-field of B. For a

regular distribution of particles, this is enough to build a recursive quadtree or octree until each

box B contains s or fewer points of evaluation.

The flow of the algorithm remains the same as in Algorithm 1. First, the tree construction

is done in the normal fashion, and for each box, B, in the preorder traversal of the tree, B

is subdivided if it has more than s points. Then, another preorder traversal allows us to build

the th necessary neighbor and interaction lists. Second, an upward pass is performed using

M2M translations. Once the upward equivalent density is known for each box B in the tree, the

downward pass is performed. Near-field interactions are taken care of separately.

43

In 2D, the SVD decomposition is used to accelerate the solving of the integral equation

resulting from solving for the equivalent density at the equivalent surface, where the potential is

known at the check surface. This operator is in fact precomputable. In 3D as boxes are used for

the equivalent and check surfaces, the authors use an FFT-based acceleration which works well

with the kernel-independent representations.

Parallelization issues are an additional concern in FMM implementations. Often one pro-

cessor is inadequate for storing all data if there is a large number of particles; hence, data parti-

tioning must be efficient. To maintain a consistent tree structure, communication needs must be

accounted for, and upward and downward passes can result in data needing to be synchronized

between processors. In (Ying, 2004), each processor ignores all other processors for computation

purposes. Then, an upward equivalent densities are synchronized, so no synchronization occurs

at computation time. (Lashuk et al., 2009) updates the previous parallelization work, provid-

ing multiple enhancements using GPUs for accelerating near-field interactions and prioritizing

matrix operators by type to achieve significant speeds on multiple architectures.

We reserve the discussion for the additional lists and operators needed for non-uniform dis-

tributions of forces or points, resulting in possible adaptive trees, for section 2.4. Further, we

provide more detail on the nature of the equivalent density representations there as well as the

operators involved.

2.3 Motivation for an FMM Volume Solver

In order to adapt existing FMM structures from particle to volume solvers, we need to discuss the

concepts of precomputation tables and level-restricted trees. To motivate the discussion of pre-

computed tables, we begin with a one-dimensional example, then move on to a two-dimensional

version from (Ethridge and Greengard, 2001) for additional motivation and discussion of level-

44

restricted trees. We follow in the next section with changes introduced for three dimensions and

kernel independence.

1D Example

We motivate the discussion with an example. We imagine that we have Ω ∈ R2, and a

continuous distribution of body force sources along the diagonal line. That is, if Ω = [−0.5, 0.5],

we have defined sources at the set of points {(x, y)|x = y, and x, y ∈ [−0.5, 0.5]}. As we only

know our force f along a single line, we project this line of forces to one dimension or R as in

figure 2.6.

Ω

Γ

Γ
N4 N3 N2 N1 S N1 N2 N3 N4

log|r|

Γ

Figure 2.6: On the left we see a regular distribution of particles which we project from 2D into

1D. In 1D, we see that for the evaluation points, marked as X’s, they are regularly spaced. For

some domain S, contributions from N(S) can have weights precomputed and stored. Every

interval has the opportunity to be S, so near-field contribution weights are always stored. Given

symmetry, we can save even fewer precomputations.

Imagine now that we discretize this line of forces into disjoint intervals, Nt, of equal size.

If we are trying to calculate the portion of the potential at a specific point xj specifically due to

45

the forces in the interval S (we assume that xj can be in any interval, including S), then we can

write this contribution to u(xj)’s potential as

u(xj)S =

∫
S

G(r)fds(y). (2.14)

Here, r = |xj − y|, y ∈ S and we let our kernel be represented as G(r) = G(|x−y|) where

we have G(r) = − 1
2π log(r) in 2D, G(r) = 1

4πr in 3D. Additionally, let f in S be fs. As we

assumed that fs was continuously known on each interval, then we know fs at a discrete set of

points, y0, y2, ..., ym−1 ∈ S. For example, we could choose to represent S at distinct points as

in figure 2.6. Then, we can construct a polynomial approximation to fs as

fs(y) =
m−1∑
i=0

ciy
i. (2.15)

Equation 2.14 becomes

u(xj)S ≈
m−1∑
i=0

ci

∫
S

G(r)yids(y)

=

m−1∑
i=0

ci

m−1∑
k=0

G(r)yik.

As we know fs at all m points yk ∈ S, we can solve for all of the coefficients ci in equation

2.15 in a least-squares fashion (Ethridge and Greengard, 2001). This system, unfortunately, may

exhibit oscillatory behavior, so it is better to reduce the degree of the polynomial, or increase the

number of evaluation points while keeping the polynomial degree constant. That is, keep the m

yk points the same, and decrease the polynomial approximation degree to n, n < m such that

our system becomes

46

1 y0 y2
0 . . . yn−1

0

1 y1 y2
1 . . . yn−1

1

1 y2 y2
2 . . . yn−1

2

...
...

... . . .
...

1 ym−1 y2
m−1 . . . ym−1

m−1

c0

c1

...

cn−1

=

f0

f1

f2

...

fm−1

This makes it easier to solve for c smoothly, using a least-squares SVD decomposition for

example. Our system to solve becomes

u(xj)S ≈
(n−1)<(m−1)∑

i=0

ci

m−1∑
k=0

G(r)yik (2.16)

We now wish to evaluate the potential due to interval S, at three distinct points in each

interval. We indicate these points with an “X” in figure 2.6. As each interval is of equivalent

size, then each evaluation point is equally spaced.

We make one additional definition. Let N(Nt) be the set of intervals directly adjacent to

interval Nt. For example, N(S) is the set of intervals to the left and right of S. As these

intervals are of equivalent size, evaluating the distance between a point in S and a point in the

interval directly to the left of S has a direct analog in the interval to the right. Hence, we can

enumerate the intervals in relation to S as in figure 2.6. The set N(S) technically has two

intervals as members, but since these two intervals are equivalently distanced, we say simply

that N(S) = N1.

For a point xj ∈ Ω, we now use the polynomial approximation of fs to show that the

contribution from S to the potential at xj is:

u(xj)S ≈
n−1∑
i=0

ci

m−1∑
k=0

G(r)yik (2.17)

47

For the two intervals in N(S), if we imagine there are three target points in each interval,

G(r) can be can be precomputed and stored for the six necessary point locations. Since we

are approximating fs at m points, we can precompute 6mn values of the form G(r)yik. As all

intervals are of the same size as S, these precomputed weights can be used for every interval

when it gets the chance to be the source interval S for the contribution to its neighbors. In fact,

since N(S) has two intervals of equal size, we can exploit the symmetry to precompute only

3mn values. If we let F (xj , i) be the precomputed weight summation
∑m−1

k=0 G(r)yik for a point

xj ∈ S, equation 2.17 becomes

u(xj)S ≈
n−1∑
i=0

ciF (xj , i) (2.18)

Additionally, for any xj ∈ S, precompute the contribution to its potential from its own

interval.

For stability purposes in the computation of the polynomial approximation, it is better to

define a function βi(y− yC) where yC is the center of the interval S and βi is the basis function

(y− yC)i, so we compute the polynomial approximation based on the relative distance from the

center of the interval. This is also more sensible for use in fast summation codes, such as FMM,

where we are computing contributions from the center of cells. So, for any point xj ∈ Ω, we

compute the contribution from interval S as

u(xj)S ≈
n−1∑
i=0

ci

m−1∑
k=0

G(r)βi(yC − yk) (2.19)

Breaking down equation 2.19 into three situations. For every discrete point, xj , we calculate

the contribution from its own interval, near-field intervals and far-field intervals.

48

if xj ∈ S ⇒ Use precomputed weights as in equation 2.18

if xj ∈ N(S) ⇒ Use precomputed weights as in equation 2.18

if xj /∈ {S,N(S)} ⇒ Compute the full summation

For the last step, we can actually use multipole expansions and the FMM to compute far-field

computations, which we address further in the next section.

2D Motivation

The method in 2D is analogous to the 1D example above. This discussion follows the ap-

proach in (Ethridge and Greengard, 2001). We will only discuss the case of a non-adaptive force

distribution resulting in a fully balanced quadtree. Imagine we have subdivided a domain Ω into

equally sized boxes. Then, assume the force f is given on a k×k grid at a leaf box B for k = 4.

Then, a 4th order polynomial approximation to f centered at (xBc , yBc), the center of B is

fB(x, y) =

Nk∑
i=1

ciγi(x̂, ŷ) (2.20)

Let x̂ = (xBc − x) and ŷ = (yBc − y) and Nk = k(k+1)
2 = 10. The basis functions, γi,

i = 1, ..., Nk are given as the set {xsyt|s, t ≥ 0, (s + t) ≤ (k − 1) = 3}. Equation 2.20 is

overdetermined, so again c can be solved for in a least-squares fashion. For a point x ∈ N(B),

the near-field neighbor-list (the set of boxes sharing a boundary with B), we can compute the

potential contribution from B as

49

uB(x) =

∫
B

G(r)fB(y)dy

=

Nk∑
i=1

ci

∫
B

G(r)γi(y)dy

=

10∑
i=1

ciF (x, i)

The value F (x, i) represents a precomputable value since x is assumed to be on a regular

grid. So, the total number of values that need to be precomputed are k2Nk = 160 values for each

possible neighbor, where there are 9 possible neighbors. However, due to symmetry, horizontal

and vertical neighbors can be stored the same way, as can vertical neighbors.

The advantages to this approach are clear, allowing savings on computation time for near-

field computations; however, we have assumed that the quadtree is non-adaptive. For an adaptive

tree (such as figure 2.9), this is not possible since near-field neighbors of B can be of any size.

In order to fix this, require the following restriction: two leaf nodes which are neighbors must

be no more than one refinement level away. That is, if B is at level l, its neighbors must be at

level l, l − 1, or l + 1. A straightforward method for taking an existing quadtree and fixing it to

meet this restriction is available in (Ethridge, 2000) and further outlined here in section A.1. We

refer to this as our level-restricted tree requirement. Such restrictions are not uncommon, and

while we only discuss a straightforward sequential approach, (Sundar et al., 2008) represents the

state-of-the-art for parallel balancing.

Once a tree T meets the tree-level restriction, we can precompute the F (x, i) values more

easily. There are 9 possible neighbors of B of the same size, 12 neighbors one level higher,

and 12 one level lower. So, for a fourth-order polynomial approximation to fB , we will have to

precompute 160(9 + 12 + 12) values for a box B of size H . Again, this seems unrealistic since

50

B can be of any size. However, these values can be computed on the assumption that B has unit

size, centered at the origin. We reproduce the following Lemma from (Ethridge, 2000):

Theorem 2.1. Let B̃ =
[
−1

2 ,
1
2

]2. If B is a leaf box at refinement level l and x is a point being

evaluated in N(B), let x̃ = 2l−1(x−xBc). That is, x̃ is the target evaluation point, x, scaled to

the unit square, centered at the origin, B̃. Two new forces for the scaled point are evaluated as

f̃(x̃, i) =

∫
B̃

γi(x)G(|x̃− x|)dx

β(i, l) = 2(d+2)(1−l)
∫
B̃

γi(x)G(2(1−l))dx

The variable d represents the degree of the basis function γi. Then, for the precomputable

value, F (x, i) becomes

F (x, i) = 2(d+2)(1−l)f̃(x̃, i) + β(i, l) (2.21)

Hence, weights can be precomputed based on the unit box, B̃ and stored. Equation 2.21 then

gives the relationship necessary for adjusting the values for the box B. For far-field interactions,

multipole expansions are computed using (2.22); this allows the encoding of volume information

from the smooth force distribution, as opposed to singular sources. The local expansion approach

remains the same as before in section 2.1.

• A multipole expansion about zB that represents the influence of sources insideB on boxes

in the far field FB can now be expressed as the real part of a complex Laurent series

uBfar(x) = R

[
a0 log(x1 + ix2 − zB) +

p∑
k=1

ak
(x1 + ix2 − zB)k

]
,

where the moments of this expansion are computed from the source distribution as

a0 = − 1

2π

∫
B
f(y)dy , ak = − 1

2π

∫
B

f(y)((y1 + iy2)− zB)k

k
. (2.22)

51

The error in the multipole expansion is also of the order O(1
2)p.

Adapting this approach to three dimensions, we employ the kernel-independent FMM algo-

rithm as discussed in the next section.

2.4 3D Kernel-Independent FMM Volume Integral Solver

Our algorithm follows the overall structure of the FMM algorithms described above but incor-

porates changes for three dimensions and kernel independence. Additionally, as the number

and size of the operators and precomputed tables grows so rapidly, it is necessary to investigate

symmetries for computational and storage complexity savings in section 2.5

Given an octree T for our 3D bounding domain D, let D =
∑
{Bi}, i = 1 . . .M be the set

of leaf boxes resulting from hierarchical subdivision. For a single-layer kernel K, we compute

the integral (2.2) at some point x as

u(x) =
M∑
i=1

K[Bi, g
Bi](x), (2.23)

whereK[B, gB](x) =
∫
BK(x,y)g(y)dy, and gB represents the restriction of the source distri-

bution to the box B. As in the analytic FMM, the contributions to u(x) from boxes Bi nearest to

x are calculated directly as near-field computations while all other contributions are calculated

using the S2M , M2M , M2L, L2L and L2T translation operators in the upward and downward

passes of the FMM algorithm.

The principal difference between the approach here and the analytic FMM for point sources

is that we use the sampled equivalent densities, introduced in section 2.2, instead of classical

special functions and series expansions to account for far-field interactions. This requires only

a black-box kernel evaluation routine and allows for a kernel-independent implementation. A

second difference between the current approach and prior kernel-independent FMM schemes is

52

that we are dealing with a continuous source distribution rather than a collection of point-like

particles. To extend the method of (Ying et al., 2003; Ying et al., 2004b) to this setting, we use

polynomial basis functions to approximate the source distribution g on each leaf box, following

the two-dimensional approach of (Greengard and Lee, 1996; Ethridge and Greengard, 2001;

Cheng et al., 2006b). More precisely, we assume that the input source is given on each leaf box

B by a polynomial gB of degree k + 1 with coefficients γB ,

gB =

Nk∑
j=1

γBj βj

(
2`(x− cB)

)
, (2.24)

where βj are polynomial basis functions, ` is the depth of the box B (` = 0 at the root of T),

and cB is its center. We use monomials for low-order accuracy and tensor-product Chebyshev

polynomials for higher-order accuracy. The number of coefficients is Nk = k(k + 1)(k + 2)/6

for each scalar source function g. We describe an interpolation scheme to convert a set of source

values defined on a grid of sample points to a polynomial representation in Section 2.4.6. As

output, our algorithm can return either point values of the potential at each target point or a

polynomial approximation of the potential on each leaf box (which can then be evaluated at

arbitrary locations).

To simplify the exposition, we present our algorithm first for a uniformly refined octree of

depth ` and then discuss the changes necessary for the adaptive octree case separately. The final

algorithmic steps are outlined in section 2.4.8, and we briefly discuss how the major loops are

optimized for shared-memory parallelization in section 3.3. We begin by explaining our use of

equivalent density representations for gB and γB .

2.4.1 Equivalent Densities

The kernel-independent approach to translation operators is based on the following idea, ex-

panded upon from section 2.2. For kernel K, suppose we have an arbitrary (smooth or non-

53

smooth) source distribution gs in a volume Ωs with surface Γs. Let Γt denote an auxiliary

surface in the exterior of Γs, and let Γcheck denote yet another auxiliary surface in the exterior of

Γt. Finally, let E denote the exterior of Γcheck. We will compute a charge density φt on Γt such

that the potentials K[Ωs, gs] and K[Γt, φt] coincide in E. This is always possible if the exterior

Dirichlet problem on Γt has a unique solution and the exterior field can be represented in terms

of a single layer potential1

Remark 2.1. For some problems, such as the Helmholtz equation, a combination of single and

double layer sources may be required because of non-physical resonances in the single layer

representation, but it is generally sufficient for non-oscillatory kernels (cf. (Kress, 1999) for the

Poisson equation, (Ladyzhenskaya, 1964) for the Stokes equations).

Our goal is to use K[Γt, φt] to represent the far-field instead of a multipole expansion. For

this, we let Γcheck approximate the outer boundary of the neighbor list LBN and solve a Fredholm

integral equation of the first kind for φt,

K[Γt, φt](x) = K[Ωs, gs](x), for all x ∈ Γcheck. (2.25)

Having matched the field on Γcheck, the fields will match in the exterior E (with precise esti-

mates depending on the specific kernel). We refer to Γt as an equivalent surface with equivalent

density φt, and Γcheck as a check surface. In the case when the original density is concentrated

on the surface Γs, then (2.25) can be written as

K[Γt, φt](x) = K[Γs, φs](x), for all x ∈ xt. (2.26)

Equations (2.25) and (2.26) form the foundation for the derivation of our translation operators.

Just as the equivalent densities will be used to replace multipole expansions in the FMM,

we match the field created by charges outside the near neighbors of a box by a discretized layer
1For some kernels (Stokes), a low-dimensional nullspace may need to be eliminated.

54

potential defined on a surface enclosing the box, and a different equivalent density will be used

to replace the local expansion. The number of samples used to represent the equivalent density

is the analog of the number of expansion terms in a classical FMM. Γt and Γcheck are cubic

surfaces, uniformly sampled at p locations. For a requested FMM precision, εfmm = 10−np ,

p = n3
p − (np − 2)3 (the nature of these points is discussed in section 2.4.2).

In discretized form, (2.26) can be written as

KΓt,xtφt = KΓs,xtφs, (2.27)

where φs and φt are vectors of point-sampled densities, and Ka,b are matrices with entries given

by Ka,b
ij = K(ai, bj) for sample points ai and aj on surfaces a and b. For known φs and solving

for φt, (2.27) is a discretization of a Fredholm equation of the first kind. For large p, linear

systems may be poorly conditioned; in such cases, we choose to utilize Tikhonov regularization

methods (Kress, 1999) to invert KΓt,xt . Tikhonov regularization replaces (K)−1 with (αI +

(K)∗K)−1K∗, where the regularization parameter α is chosen to minimize the error in matrix

inversion. We discuss this approach and its accuracy in sections 3.2.1 and 3.2.3.

Kernel invariance and matrix precomputation. For all equations we consider, the kernels

are invariant with respect to rigid transformations: for scalar kernels, K(Tx, Ty) = K(x,y)

for any rigid transformation T , and for matrix kernels such as those used for the Stokes equa-

tions, K(Tx, Ty) = TK(x,y)T T . Hence, all matrices K need to be computed only once for

each class of pairs of equivalent surfaces, closed with respect to rigid transformations. As we

define equivalent surfaces relative to boxes, these classes typically correspond to adjacency re-

lationships between boxes. Furthermore, many (but not all) kernels are homogeneous: for any

positive c, K(cx, cy) = crK(x,y) for some r 6= 0. We will refer to r as a scaling exponent. In

such cases, the number of classes of equivalent surface pairs requiring separate matrices can be

55

further reduced. Similarly, for S2M and near-field calculations, kernel invariance can be used

to precompute translation coefficients.

We consider optimizations due to invariance for each translation operator in the next sections.

To simplify formulas, we assume scalar kernels in our presentation, although our implementation

can handle matrix kernels.

2.4.2 Upward Pass

For the upward pass, we define the source-to-multipole and multipole-to-multipole operators.

The analog of sources in the analytical multipole algorithm in our case are polynomials approx-

imating the force on a leaf box. The analog of multipole expansions are upward equivalent

densities. For consistency with analytic FMM, we use S and M in operator names to denote

these quantities.

Source to Multipole (S2M) translations. For each leaf box B, we choose yB,u, the upward

equivalent surface, to be a box of radius (1 + δ)r and xB,u, the upward check surface, to be a

box of radius (3 − 2δ)r. Both surfaces are centered at cB , the center of B and aligned with B;

δ is chosen to satisfy 0 ≤ δ ≤ 2
3 . By choosing δ to be small, xB,u and yB,u are well-separated,

ensuring smooth kernels for evaluating equivalent densities (Ying et al., 2004b) (we use δ = 0.1

in practice). Equation (2.25) for upward equivalent density φB,u in this case becomes

K[yB,u, φB,u](x) = K[B, gB](x), for all x ∈ xB,u. (2.28)

With polynomial coefficients γB of gB , the right-hand side of (2.28) is approximated by

K[B, gB](x) ≈
Nk∑
j=1

γBj F
B
j (x), where (2.29)

56

FBj (x) =

∫
B
βj

(
2`(y − cB)

)
K(x,y)dy, for x ∈ xB,u, (2.30)

and γBj is the jth coefficient of γB , βj is the jth of Nk basis polynomials.

By translation invariance, FBj (x) depends only on the choice of βj and tree level ` of B. To

evaluate the integrals in expressions for FBj (xi), we use adaptive Gaussian quadrature (Berntsen

et al., 1991). The Nyström discretization (see sections A.3.5 and A.3.6 for more details) of

(2.28) at p sample points on yB,u yields

K[yB,u, φB,u](xi) =

Nk∑
j=1

FBj (xi)γ
B
j , for xi ∈ xB,u, (2.31)

or in matrix form

KB
S2MφB,u = FBS2Mγ

B, (2.32)

where φB,u is the vector of samples of equivalent density of size p, FBS2M represents the matrix

of precomputed weights FBj (xi) of size p×Nk, and KB
S2M is the matrix with entriesK(xi,yj),

i = 1 . . . p, j = 1 . . . p. Solving for φB,u,

φB,u = (KB
S2M)−1FBS2Mγ

B = TB
S2Mγ

B. (2.33)

Since for a uniformly refined tree all leaves are at the same level, the matrix TB
S2M depends

only on the level ` due to translation invariance, so only one matrix is computed. Figure 2.7(a)

illustrates the computation of φB,u from γB .

Multipole to Multipole (M2M) translations. M2M translation operators convert the sampled

equivalent density representation of a field at a child box C to a sampled equivalent density for

the parent box B, shown in figure 2.7(b). The upward equivalent surfaces yC,u, yB,u, and the

upward check surface xB,u are defined in the same way as for S2M translations. For child C of

B, we use (2.26) with φs = φC,u, φt = φB,u

57

a) b)

xB,u

yB,u

yC,u

FB
S2M

xB,u

KC,B
M2M

yB,u

(KB,B
M2M)−1

(KB
S2M)−1

Upw. Equ. Surface
Upw. Check Surface

Figure 2.7: S2M and M2M kernel-independent FMM translation operators. a) S2M : given a

polynomial approximation, γB , to a smooth force, gB inside of a leaf box, B (γ may be com-

puted from grid point locations as indicated by ’x’), using the S2M translation operators and

precomputed quadrature weights, an upward check potential, uB,u is computed at the upward

check surface, xB,u (dashed lines). This potential is then used to compute an upward equivalent

coefficient density, φB,u at the upward equivalent surface, yB,u (solid lines), by solving a linear

system of equations; b) M2M : for a non-leaf box, B and children A, we use the M2M trans-

lation operator to compute an upward check potential, uB,u, at the upward check surface xB,u

(dashed lines), resulting from A’s upward equivalent coefficient density, φA,u. This potential is

then used to compute an upward equivalent coefficient density, φB,u at the upward equivalent

surface, yB,u (solid lines), just as in the S2M computation stage.

K[yB,u, φB,u](x) =
∑
C

K[yC,u, φC,u](x), for all x ∈ xB,u, (2.34)

leading to the discretized equation for B at level ` in T

58

KB,B
M2MφB,u =

∑
C

KC,B
M2Mφ

C,u.

Similar to the S2M computations, these systems are solved as

φB,u =
∑
C

(KB,B
M2M)−1KC,B

M2MφC,u =
∑
C

TC,B
M2Mφ

C,u. (2.35)

For any two children C1 and C2, there is a rotation R mapping C1 to C2; therefore, for

kernels invariant with respect to translations and rotations, only one matrix TC,B
M2M needs to be

computed per level, with the contribution to φB,u from any other child obtained by composing

this matrix with an appropriate permutation of φC,u.

For homogeneous kernels, only one matrix needs to be stored at a single level `. Indeed, for a

box B at depth `, the matrix KB,B
M2M has entries wjK(yi,xj), where wj is the quadrature weight

of sample at xj . If the scaling factor for a matrix K is r, K(yi,xj) = (1/2)r`K(y∗i ,x
∗
j) where

y∗i and x∗j are samples corresponding to yi and xj based on a normalized box B∗ = [−1, 1]∗ at

level ` = 0. The quadrature weights scale as area; that is, they need to be multiplied by 1/22`

such that matrix entries scale as 1/2(r+2)`. As KB,B
M2M and KC,B

M2M scale in the same way, the

normalized matrix TC,B∗

M2M does not depend on scale.

For inhomogeneous kernels, at most one matrix per level needs to be stored.

2.4.3 Downward Pass

In the downward pass, we compute the analog of local expansions in the analytic FMM, the

downward equivalent densities. We define the kernel-independent versions of M2L operators

(for boxes in the interaction list LBI), L2L operators (for translating a parent’s local expansion),

and L2T operators for final evaluation at target locations. These translation operators are illus-

trated in Figure 2.8(c-e).

59

(KB,B
L2L)

−1

KP,B
L2L

d)

Dwn. Check Surface
Dwn./Upw. Equ. Surfacec)

(KB,B
L2L)

−1

xB,d

yB,d

yP,dyV,u

KV,B
M2L

yB,d

xB,d KB,B
L2T

Dwn. Equ. Surface
e)

xB,g

yB,d

Figure 2.8: M2L and L2L kernel-independent FMM translation operators. c) M2L: for box

B, to compute the contribution from a box, V ∈ LBI , we use the M2L translation operators

to compute the induced downward check potential, uB,d at the downward check surface, xB,d,

from V ’s upward equivalent coefficient density, φV,u at its upward equivalent density surface,

yB,u. uB,d is then matched at B’s downward equivalent surface, yB,d to compute the downward

equivalent density, φB,d; d) L2L: for all other boxes in FBLBI , the L2L translation operators

are used to take B’s parent, P ’s downward equivalent density, φB,d at P ’s downward equivalent

density surface, yB,d and compute the contribution to B’s downward check potential, uB,d at

B’s downward check surface, xB,d. This potential is then matched at B’s downward equivalent

surface, yB,d, to obtain B’s downward equivalent density, φB,d; e) L2T translations: for leaf

boxes, the L2T translation operator translates B’s downward equivalent density φB,d at surface

yB,d to its target grid xB,g.

Multipole to Local (M2L) translations. The M2L operator translates an upward equivalent

density φV,u, approximating the field of sources inside a box V ∈ LBI , to a downward equivalent

density φB,d for a box B, approximating the influence of these far-field sources inside B. In this

60

case, we seek to have identical potentials inside the box B. To satisfy the conditions for check

and equivalent surfaces, B is enclosed by the check surface xB,d, which, in turn, is enclosed

by the downward equivalent surface yB,d, not overlapping yV,u. This is achieved by swap-

ping upward equivalent and check surfaces to obtain downward equivalent and check surfaces:

yB,d = xB,u and xB,d = yB,u. Equation (2.26) takes the form

K[yB,d, φB,d](x) = K[yV,u, φV,u](x), for all x ∈ xB,d, (2.36)

where φB,d is discretized at p uniformly spaced samples on yB,d. The right-hand side of (2.36)

is computed and stored as a downward check potential, uB,d at xB,d, and φB,d is recovered after

the L2L contribution is added. For a box B at depth `

uB,dM2L =
∑
V ∈LBI

KV,B
M2Lφ

V,u. (2.37)

We efficiently evaluate uB,d with FFTs by treating densities as being defined on extensions

of yV,u and xB,d to 3D Cartesian grids with zero values in the interior. This results in O(p3/2)

sample locations, and the computational cost of O(p3/2 log(p)) for evaluation.

Further, there are at most 189 possible locations for V ∈ LBI relative to any particular B;

however, using translation and rotation invariance of the kernel as discussed in section 2.5, we

store at most 16 total KV,B
M2L matrices for a homogeneous kernel that is we store 16 matrices

KV,B∗

M2L, one for each class of V from the interaction list LB
∗

I of the normalized box B∗ =

[−1, 1]3, with KV,B
M2L obtained by scaling as in the M2M case. For an inhomogeneous kernel, at

most 16 matrices are needed for each possible level of T (the actual number is smaller than the

maximum number, due to boundary effects at the coarse levels of the tree).

Local to Local (L2L) translations. Contributions from FB \ LBI are captured through the

local field computed for B’s parent box, P , using L2L operators (Figure 2.8(d)). We translate

61

φP,d at yP,d to φB,d at yB,d using the equation

K[yB,d, φB,d](x) = K[yP,d, φP,d](x), for all x ∈ xB,d. (2.38)

The right-hand side is computed as a contribution to uB,d, so (2.38) forB at depth ` becomes

uB,dL2L = KP,B
L2Lφ

P,d such that (2.39)

φB,d = (KB,B
L2L)−1

(
uB,dM2L + uB,dL2L

)
. (2.40)

The precomputation of matrix KP,B
L2L is completely analogous to KC,B

M2M , with parent and

child swapped. As in the M2M computations, the inverted operator, (KB,B
L2L)−1 is precomputed

once for homogeneous kernels as a p×pmatrix at ` = 0 with normalized boxB∗ = [−1, 1]3 and

scaled as necessary; for inhomogeneous kernels, at most one matrix is stored for each possible

level of T .

Local to Grid Target (L2T) translation. For each leaf box B, we evaluate uB,g at grid lo-

cations, xB,g. At depth `, φB,d accounts for all contributions from FB while direct near-field

calculations (discussed in detail in section 2.4.4) account for the contributions from NB . The

far-field potential is computed using L2T operators (Figure 2.8(e)),

u(x) = K[yB,d,φB,d](x), x ∈ xB,g, or in matrix form: uB,g = KB,B
L2Tφ

B,d. (2.41)

For a uniformly-refined tree, all leaves are at the same level, so we precompute and store one

KB,B
L2T matrix.

2.4.4 Near-Field Interactions

After the far-field contributions are computed, the final step is to compute near-field interactions

for leaf boxes. This is the most expensive step in the computation, if carried out naı̈vely, and

62

it is essential to optimize this part of the algorithm. For each leaf box B, we need to compute

the influence of the volume density gU for every box U ∈ LNB (the near field boxes). Given a

polynomial approximation γU to gU , we evaluate the potential on an n× n× n grid of samples

xB,g on B, which we then add to the far field contribution computed in (2.41).

The principal mechanism to accelerate this step is based on the observation that we may use

a regular grid pattern of points in B, permitting the use of precomputation. More precisely,

uB,g(x) =
∑
U

K[U, g](x) =
∑
U

Nk∑
j=1

γUj F
U,B
j (x), (2.42)

FU,Bj (x) =

∫
U
βj

(
2`(y − cU)

)
K(x,y)dy, for x ∈ xB,g, (2.43)

where cU is the center of box U . We evaluate uB,g on a uniform grid xB,gi , i = 1 . . . n3 for n ≤ 6

and on a tensor product Chebyshev grid for n > 6 to avoid condition problems, as discussed in

section 3.2.2. In matrix form (2.42) becomes

uB,g =
∑
U

FU,BγU . (2.44)

For a uniformly-subdivided octree, there are at most 27 possible locations for U ∈ LBN

with respect to B itself; using symmetries, however, only 4 are unique up to translation and

rotation (section 2.5). As in the S2M computations, adaptive Gaussian quadrature (Berntsen

et al., 1991) is used to precompute and store the weights for these matrices. This can be done to

machine precision for the function u and its first or second derivatives.

As each leaf box, B is not dependent on the near-field computations of any leaf box in T , it

can quickly be seen how even the simplest approaches can take advantage of parallel architec-

tures in the near-field computations. In section 3.3, we discuss how we use OpenMP (Chapman

et al., 2007) and load-balancing approaches to parallelize the near-field and other computational

steps of the FMM for shared-memory, multiprocessor architectures.

63

2.4.5 Polynomial approximation of the solution

In order to compute the value of uB at an arbitrary point in the box, it is convenient to approxi-

mate it as a polynomial υB using a least-squares fit, minimizing

n3∑
i=1

‖uB(xi)−
Nn∑
j=1

υBj βj(xi − cB)‖2 for xi ∈ xB, (2.45)

where βj ∈ {Pa(x)Pb(y)Pc(z), 0 ≤ a+ b+ c ≤ n− 1} using either a monomial or Chebyshev

polynomial basis, depending on the desired order n. For n ≤ 6 it is more convenient to use

regular grids, while for n > 6 Chebyshev grid points provide greater stability. In section 3.2.2

we demonstrate the accuracy of equispaced points and Chebyshev points for n = 4, 6, 8. For box

B at depth `, if Γ is the matrix with entries Γij = βj(2
`(x − cB)), (2.45) leads to the equation

υB = Γ(+)uB,g, where the pseudoinverse Γ(+) needs to be precomputed only once as it does not

depend on the kernel and is scale-invariant in all cases; that is, Γij = βj(x
∗
i) where x∗i are grid

points in B∗ = [−1, 1]3. Once the vBj are known, we can evaluate the solution at an arbitrary

point xt ∈ B as

u(xt) =

Nn∑
j=1

υBj βj(xt − cB). (2.46)

In general, we assume that k, the order of the approximation γB of the force gB , is equal

to n, the order of approximation of υB; however, as source and target locations need not be the

same, k and n can be different.

2.4.6 Polynomial force approximation from grid samples

In our description of the upward pass, we have assumed that the right-hand side is already given

as a polynomial. If the force is available in another form (e.g., as samples on an AMR grid or

polynomials on an unstructured finite element grid), we can resample it adaptively, to obtain

64

kth-order approximations with desired error on leaf boxes, then convert it to a polynomial rep-

resentation. The only requirement on the input force in this case is that we can evaluate it at our

grid locations with kth-order accuracy or better, which is nontrivial only in the case of forces

given by samples at scattered points.

If the values of the force f(x) are known at k3 uniformly sampled or Chebyshev points on a

leaf B with center cB , an approximation to the force is constructed as

gB(x) ≈
Nk∑
j=1

γBj βj(x− xB)

for Nk = k(k + 1)(k + 2)/6. As for the evaluation at arbitrary target locations, we use the

monomial basis for k ≤ 6, and Chebyshev basis for k > 6.

2.4.7 Non-Uniform Source Distributions and Adaptive FMM

We have thus far assumed that all leaves in T are at the same level. Adaptive refinement of the

octree results in leaf boxes at different levels for nonuniform source distributions. This leads to

several additional types of interactions between boxes that need to be taken into account.

For arbitrary adaptive octrees, the number of relative positions of boxes one needs to consider

can become very large. In order to avoid storing large number of precomputed matrices, we

consider level-restricted refinement: we require adjacent leaf boxes be within one level of each

other, a common restriction in tree codes and structured grids. Many fast approaches exist to

convert arbitrary octrees to ones satisfying this constraint (Sundar et al., 2008); we currently use

a straightforward sequential algorithm (section A.1) similar to (Ethridge and Greengard, 2001).

We begin by introducing the notation for these lists and then discuss how this affects the

S2M and near-field interaction computations.

65

Lists for adaptive FMM. For adaptively refined trees, we define several lists in addition to the

neighbor list LBN and interaction list LBI used in the uniform case. Our definitions and notation

follow (Greengard and Rokhlin, 1987; Greengard and Rokhlin, 1988; Greengard, 1994).

For a leaf box B, we define the U and W lists.

• The U-list, LBU , is the set of other leaves adjacent (at arbitrary levels) toB, including itself;

LBU coincides with the neighbor list LBN for the uniformly refined case.

• The W-list, LBW , is the set of descendants of B’s neighbors, not adjacent to B, but whose

parents are adjacent to B. This list contains boxes at finer levels than B for which B is in

their far range, but which are in the near range of the parent of B. For any W ∈ LBW , W

is at a finer level than B and W ∈ NB (conversely, B ∈ FB).

For leaf and non-leaf boxes B, we define V and X lists.

• The V-list, LBV , is the set ofB’s parent’s neighbor’s children, not-adjacent toB. LBV = LBI

for uniformly-refined trees, and if one completes an adaptive tree T by adding all missing

boxes, on non-empty levels to a uniformly refined tree T u, then LBV in T is a subset of LBI

in T u.

• The X-list, LBX , is the set of boxes A such that B ∈ LAW . In a more geometric manner, one

can define X as the set of leaf boxes on levels coarser than B, overlapping a box in the

interaction list of B in T u but not overlapping the neighbors of B in T u.

The following observations can be made about these lists: B ∈ LAU if and only if A ∈ LBU ,

V ∈ LAV if and only if A ∈ LBV , B ∈ LAW if and only if A ∈ LBX . A fragment of an adaptively

refined level-restricted tree, with U ,V ,W andX lists for a boxB was shown above in Figure 2.9.

By the following lemma, for level-restricted trees, boxes inW andX lists have finite possible

positions.

66

U
V

U U

V V V

V V

V

V

V

V

V

U

U

V V V

V V

X

X
U

U

W

W W W W

U U

B

Figure 2.9: A 2d quadtree resulting from a non-uniform source distribution. For box B, corre-

spondingly marked boxes represent the boxes in the U , V , W , and X lists of B.

Lemma 2.1. For a level-restricted tree T , in which all neighboring leaf boxes are within one

level of each other in the octree, for a box, B, all boxes in LBW and LBX must also be within one

level of B.

Proof. Assume for a boxB that there exists a boxW ∈ LBW such that level(W)−level(B) ≥ 2.

That implies that forW ’s parent, PW , level(PW)−level(B) ≥ 1, further implying that for some

descendantD of PW ,D ∈ LBU and level(D)−level(B) ≥ 2, violating our tree-level restriction.

So, W must be within one level of B. Since W ∈ LBW implies B ∈ LWX , this also means that all

boxes X ∈ LBX must also be within one level of B.

Possible positions of boxes in U , V , W and X lists in a level-restricted tree are shown in

Figure 2.10. Boxes in LBU and LBV are treated exactly in the same way as boxes in LBN and LBI ,

respectively in the uniform case: for LBU , the near-field interaction operators are used, and for

LBV , M2L operators are used.

67

For some leaf box B with parent PB , if W ∈ LBW , then W 6∈ FB; therefore, W ’s contribu-

tion toB is not accounted for through PB . At the same time, sinceB is inFW ,W ’s contribution

to B’s potential can be computed by evaluating its upward density potential (the analog of mul-

tipole expansions) at target locations in B; hence, using notation analogous to other operators,

M2T operators need to be defined. For X ∈ LBX , B ∈ NX but X ∈ FPB ; thus, we need

to evaluate contributions of sources from X directly. We can apply these contributions to the

downward density of B; that is, we need to define an S2L operator. As explained below, for the

local low-order polynomial representations to the force distributions, it may be preferable to use

near-field computations mapping polynomial coefficients from boxes in LBX and LBW to potential

values at target locations in B.

same level U finer level U coarser level U

W X V

Figure 2.10: Possible box positions for different lists in a level-restricted trees in 2d. The con-

figurations in 3d are analogous.

To summarize, for adaptive FMM, in addition to M2M , M2L, L2L and L2T already de-

fined, two additional operators, M2T and S2L need to be defined. Further, as leaves of the tree

68

now may exist at arbitrary levels, and boxes U ∈ LBU may be on levels different from B, both

S2M and near-field (S2T) computations need to be modified. We begin by describing adapta-

tions to the S2M and S2T operators and follow with a discussion of the new M2T and S2L

operators.

S2M operators for the adaptive case. For a uniformly-refined domain, all leaves in the octree

structure are on the same level, so only one matrix, TB
S2M needs to be computed for a box B at

leaf level `. In the adaptive case, however, leaf boxes can be located at multiple levels.

For homogeneous kernels, we store a single matrix TB∗
S2M , scaling for level ` as was done

for the M2M and L2L operators. Let B∗ = [−1, 1]3 at ` = 0. Then, for x ∈ B at level `, let

x∗ = 2`(x − cB) for x∗ ∈ B∗. For scaling exponent, r, K(xi,yj) =
(

1
2

)r`
K(x∗i ,y

∗
j), and

(2.30) becomes

FBj (x) =

(
1

2

)(r+2)`

K[B∗, βj](x
∗) =

(
1

2

)(r+2)`

FB
∗

j (x∗) for all x ∈ xB,g, x∗ ∈ xB
∗,g.

In matrix form, FBS2M = 2−(r+2)`FB
∗

S2M and KB
S2M = 2−r`KB∗

S2M . Solving for φB,u, (2.33)

becomes

φB,u =
1

2
(KB∗

S2M)−1FB
∗

S2Mγ
B = TB∗

S2Mγ
B, (2.47)

where TB∗
S2M is precomputed and stored. For inhomogeneous kernels, we store one matrix per

level containing leaf boxes.

Neighbor list interactions for adaptive trees. In section 2.4.4, for a box B with neighbor U ,

the assumption that all leaves are at the same level allows us to use (2.44) with precomputed

matrices FU,BS2T and U ’s coefficients γU to evaluate U ’s contribution to B’s potential at the grid

points xB,g. For adaptive level-restricted trees, leaves may exist at any level and U ∈ LBU may

69

exist at one level finer or coarser than B. As above for the S2M operators, for homogeneous

kernels with scaling exponent r, we only compute matrices for pairs (B,U) withB scaled toB∗

(U is appropriately scaled as well to U∗) such that (2.43) and (2.44) become

FU,Bj (x) =

(
1

2

)(r+2)`

K[U∗, βj](x
∗) =

(
1

2

)(r+2)`

F
(U,B)∗

j (x∗),

for all x ∈ xB,g, x∗ ∈ xB
∗,g, and

uB,g =
∑
U

FU,BS2Tγ
U =

(
1

2

)(r+2)`∑
U

F
(U,B)∗

S2T γU , (2.48)

where r is the kernel scaling exponent.

As discussed earlier, there are 27 possible same-level neighbors, and due to tree-level re-

strictions, there are 56 fine-level neighbors (one level deeper in the tree) and 56 coarse-level

neighbors (one level higher in the tree), all constituting the 139 possible locations for boxes

in LBU . As shown in section 2.5, using symmetries of relative positions of U and B, we only

precompute and store 10 matrices of size n3 ×Nk.

For inhomogeneous kernels, this set of matrices is precomputed for each level for which leaf

boxes exist.

M2T and S2L operators. As explained above, for a leaf box B and W ∈ LBW , we need an

operator that evaluates the potential represented by φW,u, the upward equivalent density of W ,

at the target grid locations on B, xB,g:

uB,g(x) = K[yW,u,φW,u](x) for x ∈ xB,g,

or in matrix form,

uB,g = KW,B
M2Tφ

W,u, (2.49)

70

where the operators KW,B
M2T are precomputed and stored. Similar to all previous cases, for ho-

mogeneous kernels, KW,B
M2T can be computed for the normalized box B∗ only and scaled as

necessary.

For all boxes B, the list LBX contains leaf boxes X , for which contributions to B are com-

puted by evaluating contribution of gX , represented by coefficients γX , on B’s downward check

surface:

uB,d(x) = K[X, gX](x) ≈
Nk∑
j=1

γXj Fj(x) for x ∈ xB,d,

or in matrix form,

uB,d = FX,BS2Lγ
X . (2.50)

For a boxB there are 152 possible locations forW ∈ LBW ; however, due to symmetries, only

6 locations are distinct up to translation and rotation, so only 6 KW,B
M2T matrices of size n3 × p

are stored. Also, due to the inverse relationship between LBX and LBW , the number of symmetry

classes is the same; that is, 6 matrices FX,BS2L of size p × Nk need to be precomputed for each

level for which leaf boxes X exist. As in all other cases, for homogeneous kernels, the matrices

need to be precomputed only for one level ` = 0 and scaled as necessary. Symmetry classes are

discussed in 2.5.

Remark 2.2. We use one additional optimization which applies in cases when the order of

local polynomial approximations of the force is low compared to the order of approximation

used for upward and downward check densities. In such cases, the size of M2T and S2L

matrices may actually be larger than the size of the matrices needed for direct computation of

contributions from coefficients on boxes W ∈ LBW or X ∈ LBX to the target grid locations xB,g

on B. Assuming we have a homogeneous kernel, if W ∈ LBW is a leaf for a box B, we can

71

replace KW,B
M2T with an S2T operator FW,BS2T , constructed exactly in the same way as for boxes

in the neighbor list LBU . Similarly, if B is a leaf, for a box X ∈ LBX , we can replace FX,BS2L with

FX,BS2T . In other words, for low order polynomial approximations of the force, one treats leaf

W boxes in the same way as adjacent boxes of B and for leaf boxes B, LBX is also treated as

adjacent boxes. Specifically, FW,BS2T is of size n3 × Nk while KW,B
M2T is of size n3 × p, so when

a box W is a leaf and Nk < p, we use the faster S2T translations. Similarly, FX,BS2T is of size

n3 × Nk and FX,BS2L is of size p × Nk, so for leaves B, we use FX,BS2T when n3 < p. Again,

symmetries result in 6 matrices needed of each type (section 2.5).

For inhomogeneous kernels, we must compute and store these matrices for each necessary

level `.

2.4.8 Pseudocode and Complexity for Kernel-Independent FMM Volume Solver.

Pseudocode. We assume that a tree-level restricted octree, T , already exists (Ethridge and

Greengard, 2001) and that for each box, B, we are given the approximation, γB to the force gB

(we discussed how to construct γ from g in section 2.4.6). For clarity, we do not include the

optimization of replacing M2T and S2L with S2T operators when more efficient as discussed

above for Algorithm 2 below.

72

Algorithm 2 Kernel-Independent Volume FMM
STEP 1 - BUILD LISTS

for each box B in preorder traversal of T do

build LBU , LBW , LBX , and LBV (section 2.4.7)

end for

STEP 2 - UPWARD PASS (section 2.4.2)

for each box B in postorder traversal of T do

if B is a leaf box then

Convert local force approximations to upward densities: φB,u := TB
S2Mγ

B (2.33)

else

Translate children’s upward densities: φB,u :=
∑
C

TC,B
M2Mφ

Ci,u (2.35)

end if

end for

STEP 3 - DOWNWARD PASS (section 2.4.3)

for each non-root box B in preorder traversal of T do

Compute potential due to B’s parent P and from LBV and LBX to B’s downward potential:

uB,d := KP,B
L2Lφ

P,d +
∑
V ∈LB

V

KV,B
M2Lφ

V,u +
∑
X∈LB

X

FX,BS2Lγ
X (2.39), (2.37), (2.50)

Translate the check potential to the downward density: φB,d := (KB,B
L2L)−1uB,d (2.40)

if B is a leaf box then

Compute potentials from adjacent and W boxes to the potential at grid locations:

uB,g :=
∑
U∈LB

U

FU,BS2T γ
U +

∑
W∈LB

W

KW,B
M2Tφ

W,u (2.44), (2.49)

Add the potential from the far field: uB,g := uB,g + FL2Tφ
B,d (2.41)

end if

end for

Computational complexity and storage requirements. We analyze the complexity for a uniformly-

refined octree. The analysis for the adaptive FMM is similar but slightly more complicated. We

assume a homogeneous scalar kernel such as the Laplace kernel in equation (2.10) for analyzing

73

the storage and computational complexities. Further, we assume that there are ` levels in the

octree T. For a uniform tree, this implies we have M` = 8` leaves and Mt = (8`+1 − 1)/7

total boxes in T . If we are using a kth-order polynomial approximation to the force at each leaf,

we further assume there are approximately N = M`n
3 total target points and C = M`Nk total

coefficients. Let p be the number of coefficients sought in the multipole expansion, affecting the

size of the equivalent densities and surfaces; for a desired level of precision, εfmm = 10−np in

the expansion, p = n3
p − (np − 2)3. In table 2.1, we indicate the computational complexity of

each step of the non-adaptive FMM algorithm as well as the amount of precomputation and stor-

age used for operators at each step. For non-uniform source distributions, we store additional

operators for the near-field interactions in the U, W, and X operators; the complexity of these

operators are based on the degree of adaptivity.

Finally, we note that the computational and storage complexities will scale linearly for matrix

or inhomogeneous kernels. For example, for the Stokes kernel in equation (2.12), the number of

coefficients, p, scales as a results of the matrix kernel size to p = 9(n3
p − (np − 2)3). For the

Modified Helmholtz kernel in equation (2.11), the inhomogeneous nature of the kernel results in

an increased storage complexity, which varies depending on the number of different levels in the

tree.

74

Operator Computational Complexity Storage

S2M : TB
S2M O(Cp) pNk

M2M : TC,B
M2M O((Mt −M`)p

2) p2

M2L: KV,B
M2L O(Mtp

3/2 log (p) + 189Mtp
3/2) 16p3/2

L2L: KP,B
L2L, (KB,B

L2L)−1 O(Mtp
2) 2p2

L2T : KB,B
L2T O(Np) pn3

Near Interaction: FU,BS2T O(27NNk) 4Nkn
3

U -list (same, fine, coarse levels): FU,BS2T 10Nkn
3

W -list: FW,BS2T , KW,B
M2T 6n3(Nk + p)

X-list: FX,BS2T , FX,BS2L 6Nk(n
3 + p)

Table 2.1: Computational complexity and storage requirements for a scalar homogeneous kernel.

These values scale linearly for matrix and inhomogeneous kernels.

75

2.5 Symmetries for precomputed interaction operators

For each of the lists LBU ,LBV ,LBW and LBX , we may need to precompute translation matrices for

densities or polynomial coefficients. The number of different relative positions of the box B

and a box in one of these lists can be large, and precomputing all possible matrices may require

significant time and substantial storage. Performance can also be affected due to the need for

random access of large amounts of precomputed data.

The number of matrices we need to precompute can be substantially reduced if we take into

account symmetries; that is, many box positions are equivalent in the sense that there is a rigid

transformation T , mapping a box Z1 to Z2 and the box B to itself. We store a single matrix for

a representative box for each symmetry class, obtaining matrices for all elements of the class by

applying a transformation T to the matrix for the representative box.

For every list type Z ∈ {U, V,W,X}, we define a set of possible box positions Pos(Z)

and a set of symmetry classes which form a partition of Pos(Z). For each class, we define a

reference box, and for each box position in Pos(Z), we need an efficient way to determine its

class and a transformation T (B) : R3 → R3 mapping it to the reference box.

For all lists, the symmetries are related to the transformations of space which map a grid of

cubes to itself. Referring to a grid of size N ×N ×N grid as an N3 grid, we consider grids of

sizes 13 to 73 (we discuss which lists correspond to which cubes in more detail below). Before

considering individual lists, we classify all symmetries of such grids.

Grid symmetries. The cubes on the grid N3 are indexed by (i, j, k) where each index takes

values −M . . .− 1, 0, 1 . . .M for odd N = 2M + 1 and −M . . .− 1, 1 . . .M for even N . We

skip index 0 for even grids to ensure that the coordinates of the cube centers and cube indices

are transformed by symmetries of the cube in the same way. If the cube size is 1, then the cube

76

center coordinates are exactly the indices (i, j, k) for odd N and differ by ±1/2 for even N ,

depending on the index sign.

Each N3 grid can be partitioned into M (for even N) or M + 1 (for odd N) layers, with

layer l consisting of cubes (i, j, k) withmax(i, j, k) = l. Layer 0 consists of one cube and exists

only for odd N , and layer M consists of the cubes on the surface of the N3 grid. We will refer

to layers either by their number l or by size. For odd N , layer l has size (2l + 1)3 and for even

N , layer l has size (2l)3.

The group of symmetries Gcube of a cube has order 48. For a cube centered at zero, trans-

formations in Gcube are compositions of rotations and reflections, mapping each axis direction

to another, possibly with orientation reversed. Clearly, any permutation of directions is possible,

so it is convenient to identify the group with S3 × J3, where S3 is the group of permutations

of length 3, and J is the two-element group of reflections. The rotational part of any element

of Gcube can be specified as a permutation of length 3 on the set of axes {x, y, z}, with an

orientation 1 or -1 specified for each axis. Transformations from Gcube encoded in this way

can be applied to points very efficiently: for a point x ∈ R3, the permutation is applied to its

coordinates, which are then scaled by 1 or -1.

For the N3 grid, the equivalence classes under the action of Gcube can be enumerated com-

binatorially. Observe that if two triples of indices (i, j, k) and (i′, j′, k′) differ only by signs

of components, corresponding cubes are in the same class: they are mapped to each other by

reflections. To enumerate all classes, we only need to consider cubes with nonnegative indices.

Two cubes with nonnegative indices (i, j, k) and (i′, j′, k′) are in the same class if and only if

there is a permutation mapping (i, j, k) to (i′, j′, k′).

If we adopt the convention that i, j, and k represent distinct numbers in the range 1 . . .M ,

seven series of equivalence classes are easily enumerated, corresponding to signatures (i, j, k),

(i, i, j), (i, i, i), (0, i, i), (0, 0, i) and (0, 0, 0). A reference box in every class is uniquely de-

77

x
z

y

(-M,-M,-M)

representative

Figure 2.11: A three-dimensional view of the class (1, 2, 3) in the 73 grid, showing the in-

dex directions (x, y, z) the representative box, and the box with index (−M,−M,−M) =

(−3,−3,−3).

fined by requiring that its three indices are all nonnegative and are in nondecreasing order (Fig-

ure 2.11).

The properties of classes in each series are summarized in Table 2.2 with figures illustrating

the geometric meaning of each class series. For example, the classes with signature (i, j, k) con-

sist of cubes in the interior of layer faces with centers not on face diagonals or lines connecting

edge centers, (i, i, i) are classes of cubes at layer vertices, and (0, i, i) are classes of cubes at

layer edge centers.

The total number of classes for (2M)3 layers is (M + 1)M/2 (classes (i, j,M) with i, j =

1 . . .M , i ≤ j), and for (2M + 1)3 layers, it is (M + 2)(M + 1)/2 (classes (i, j,M) with

i, j = 0 . . .M , i ≤ j).

78

Series

signatures

73 layer

classes
Reference cube

Classes

per grid

Classes

per layer

Class

size

(i, j, k) (|i|, |j|, |k|),

|i| < |j| < |k|

 M

3

 M − 1

2

 48

(i, i, j) (|i|, |i|, |j|),|i| < |j|

or (|i|, |j|, |j|)

M2 −M 2M −M 24

(i, i, i) (|i|, |i|, |i|) M 1 8

(0, i, j) (0, |i|, |j|)

 M

2

 M − 1 24

(0, i, i) (0, |i|, |i|) M 1 12

(0, i, i) (0, 0, |i|) M 1 6

(0, 0, 0) — (0, 0, 0) 1 — 1

Table 2.2: Series of equivalence classes of cubes in an N3 grid. For even N = 2M , only the

first 3 series of classes may be nonempty. For odd N = 2M + 1, all classes are present. For

M ≤ 2, (i, j, k) classes are empty, and for M = 1, (i, i, j) and (0, i, j) classes are also empty.

Class (0,0,0) corresponding to the center of the grid, exists only in layer 0. In the figures, boxes

in different classes in one series are marked with circles of different colors, representative boxes

are marked with circles with black border. The view is from the top, with first index direction to

the right, second direction up and third towards the viewer, as in Figure 2.11.

79

For a box Z, with grid index (i, j, k) relative to B, the reference box is obtained by taking

absolute values and sorting the indices; sign changes and a permutation mapping (i, j, k) to the

reference box index also encode the transformation as explained above.

Next, we show how symmetry classes for different lists can be obtained from symmetry

classes of layers of different sizes.

Symmetries of LBU . Due to our tree-level restriction, boxes U ∈ LBU are either neighbors of

B, neighbors of B’s parent and adjacent to B, or children of neighbors of B adjacent to B. We

denote these three sublists of LBU by LBU,n, LBU,p and LBU,c respectively. Note that A ∈ LBU,p is

equivalent to B ∈ LAU,c, a duality similar to the duality between W and X lists. It is sufficient to

consider LBU,n and LBU,c: the classes for LBU,p are obtained by swapping B and U and considering

classes of LBU,c. The neighbors of B on the same level as B form a 33 grid centered at B, and

from table 2.2, it can be immediately seen that the number of classes is 4: (1,1,1), (0,1,1), (0,0,1),

and (0,0,0).

Possible locations of U ∈ LBU,c can be thought of as the outer layer of a 43 grid, withM = 2;

B in this case corresponds to the 23 subgrid in the center, so rotations of the 43 grid mapping it

to itself also map B to itself. Again, we immediately obtain 3 classes: (1,1,2), (1,2,2), (2,2,2).

This gives a total of 10 classes for LBU .

Symmetries of LBV . Boxes in LBV are at the same level as B and are children of neighbors

of the parent of B, so they can all be represented by cubes of a 63 grid. This grid, however,

is not centered at B, so the group of rigid transformations of the grid mapping to itself do not

necessarily preserve B. The problem can be avoided if we regard LBV as a subset of a 73 grid

centered at B with M = 3. All boxes V ∈ LBV are in layers 2 and 3 of this grid, and there are

10 classes: for layer 3, classes (i, j, 3), i, j = 1 . . . 3, i ≤ j and for layer 2, classes (i, j, 2),

i, j = 0, 1, 2, i ≤ j.

80

Because we consider only a subset of the the full 73 grid, the class sizes are smaller, but one

can easily show that no class becomes empty, so the number is optimal.

Symmetries of LBW . For level-restricted trees, boxes W ∈ LBW are children of neighbors of

B not adjacent to B; that is,they reside in the surface layer of a 63 grid with B identified as the

central 23 grid. Again, table 2.2 immediately yields the classes of boxes: in this case, M = 3,

and just as it is the case for outer-layer of possible boxes in LBV , we have 6 classes, (i, j, 3),

i, j = 1 . . . 3, i ≤ j. Due to the duality between LBX and LBW , the number of classes for LBX is

the same. We note that the class sizes may not be the same.

To summarize, the following procedure can be used to obtain a precomputed matrix and

transformation to the reference box for a given pair (B,Z). First, if Z is in LBU,n, LBU,c, L
B
V or

LBW , determine the translation and scaling which map B to the central box or 23 subgrid of a

larger grid, depending on the list:

• central box of 33 for LBU,n,

• central 23 subgrid of 43 grid for LBU,c,

• central box 73 grid for LBV ,

• and central 23 subgrid of 63 grid for LBW .

Then, we apply the same transformation to the center of Z; resulting coordinates yield the

index (i, j, k), which is translated into the reference box and rotation as described above.

For the two lists, LBU,p and LBX , we use duality to lists LBU,c and LBW respectively: instead of

mapping a box B to the central 23 subgrid, we map U ∈ LBU,p (respectively W ∈ LBX) to this

subgrid and compute the index for B.

81

2.6 Additional Boundary Conditions for the Box

In order to impose boundary conditions on the box, we turn to using the classic ideas of Lord

Rayleigh (Rayleigh, 1892) as described in (Greengard and Rokhlin, 1987; Ethridge and Green-

gard, 2001). We begin by discussing how to modify these approaches for the kernel-independent

FMM with periodic boundary conditions and then discuss how to impose homogeneous Dirichlet

boundary conditions. Mixed boundary conditions such as a combination of Dirichlet, periodic

and Neumann can also be derived from the methods described below. Additionally, inhomoge-

neous boundary conditions, while not implemented in our current algorithm, could be performed

in a manner similar to (Ethridge and Greengard, 2001)

2.6.1 Periodic Boundary Conditions

Imposing periodic boundary conditions on a domain box B consists of accounting for all copies

of B in infinite space. In two dimensions, the problem would be as seen in figure 2.12. In three

dimensions, we tile R3 with copies of our original domain B. At the conclusion of the upward

pass (M2M - Multipole to Multipole pass) in algorithm 1, we have a multipole expansion for

the entire source distribution in the original domain B, or in the case of the kernel-independent

FMM in algorithm 2, we have an upward equivalent density φB,u representation on the upward

equivalent surface, yB,u for the entire domain, B. Since φB,u is independent of location for our

kernel, all copies ofB have the same equivalent densities at their equivalent surfaces. Therefore,

for all copies Bc of B which are not immediately adjacent (copies which are in its far-field),

we can compute the influence from φBc,u at B’s downward check surface, xB,d. Then at the

downward pass (M2L - Multipole to Local) of the FMM, the influence from all of these boxes

is accounted for. In figure 2.12 boxes inside of the dotted-line are in the near-field and must be

accounted for differently.

82

B

B
B
B

B

B
B
...

...
B

B
B
B

B

B
B
...

...
B

B
B
B

B

B
B
...

...
B

B
B
B

B

B
B
...

...
B

B
B
B

B

B
B
...

...
B

B
B
B

B

B
B
...

...
B

B
B
B

B

B
B
...

......

...

. . .

. . .

...

...

...

...

...

...

...

...

...

...

...

...

...

...

Figure 2.12: The original domain B is tiled on the infinite plane. In order to account for peri-

odic boundary conditions, we must calculate the potential induced on B by a significantly large

numbers of copies of itself, an intractable task if attempted directly.

We cannot of course account for an infinite number of copies of B; furthermore, even at-

tempting to account for a large number of them (for example, computing the influence more

than even 10 levels outward) is cumbersome and computationally not feasible directly. Instead

of using lattice sums which rely on the equation type, we use the existing infrastructure of the

kernel-independent FMM to aid us. Assuming that B is of width H = 2−r+1 for rootlevel r of

T , as before, let NB be the near-field of B, containing all copies of itself within a box centered

at B with width 3H . In the first step, we account for the influence of copies of B not in NB

which are contained within a box of width 9H centered at B; for the periodic solver, this repre-

sents B’s interaction list LBI . Since we are computing the check potential, uB,dM2L at B’s check

surface from copies of B using B’s own equivalent density, φB,u, this is a slight modification of

the M2L operation in section 2.4.3. The modified equation is presented in equation (2.51).

83

uB,dM2L =
∑
V ∈LBI

KV,B
M2Lφ

B,u = KB
M2Lφ

B,u, (2.51)

where KB
M2L =

∑
V ∈LBI

KV,B
M2L is used since φB,u is the same equivalent density for all nodes

in LBI .

We further note that the full domain of B’s parent, defined here as B∗, is the box centered at

B of width 3H containing all boxes in NB . In figure 2.13, B is at the center of the image, and

all boxes in NB = B∗ are contained within the red outlined box centered at B.

B

V
V V

V
VVV

V
V

V
V V

V
VVV

V
V

V
V V

V
VVV

V
V

V
V V

V
VVV

V
V

V
V V

V
VVV

V
V

V
V V

V
VVV

V
V

V
V V

V
VVV

V
V

V
V V

V
VVV

V
V

V V V V V V V V V
V V V V V V V V V

V V V V V V V V V

V V V V V V V V V

V V V V V V V V V

V V V V V V V V V

V V V

V V V

V V V

V

V

V V

V

V V

V

V

Figure 2.13: For our original domain, denoted by B, the periodic far-field, FB is everything

outside of the small red box (out to infinity, not just the small sampling here). All boxes within

the blue region with green labeled V s are in B’s direct interaction list, LBI . B’s parent in the

periodic domain is considered to be the box in red, and its interaction list consists of all boxes

of the same size with boxes labeled with red V s. B’s parent’s parent is the green-outlined

box, and its interaction list consists of an additional layer of 702 boxes outside of this picture,

each of which is of size (7H)3 for H the width of our domain B. In this way, we account for(
3N+1 − 3

)
/2 rings of B (or (3N+1)3 − 33 copies of B) after just N steps, going out

∑N
i=1 3i

concentric rings of B.

84

Continuing outward in figure 2.13, all boxes labeled as a blue V inside of the green-outlined

box, centered at B, are copies of B and are in LBI . All of the boxes with red V s are copies of

B∗ and are in LB
∗

I such that each of these boxes computes the influence of the copies of B∗ at

xB
∗,d using φB

∗,u as above with equation (2.51), substituting B∗ for B:

uB
∗,d

M2L =
∑

V ∈LB
∗
I

KV,B∗

M2Lφ
B∗,u = KB∗

M2Lφ
B∗,u. (2.52)

We note that in equations (2.51) and (2.52), for a scale-variant kernel, KV,B
M2L and KV,B∗

M2L

(and subsequently, the summation kernels, KB
M2L and KB∗

M2L) are equal up to a scaling factor

for respective members of their interaction lists, as described earlier. Additionally, we compute

φB
∗,u using a slight modification of the M2M process from section 2.4.2. That is, modifying

equation (2.35),

φB
∗,u =

∑
B

(KB∗,B∗

M2M)−1KB,B∗

M2MφB,u =
∑
B

TB,B∗

M2Mφ
B,u (2.53)

We note that sinceB∗’s children are just copies of the originalB equation (2.53) is simplified

as

φB
∗,u = TB∗

M2Mφ
B,u =

(∑
B

TB,B∗

M2M

)
φB,u, (2.54)

where TB,B∗

M2M is computed for each translated copy of B. In figure 2.14 we modify our earlier

figures to show how the M2M process works for the full domain. In three dimensions, the

number of children accounted for is 27 in the M2M process.

This is a slight modification to the M2M upward computations already used in the general

structure. ForB∗’s parent, we calculate its upward equivalent density as the result of the potential

from 27 copies of B∗ in three dimensions. We continue this process, building concentrically

outward to insure symmetry in all directions, avoiding the need for renormalizing the densities

as we move upward (Berman and Greengard, 1994; Rodin and Overfelt, 2004). Iterating this

85

�
✁✂✁
✄☎✆

✝✞✟ ✠✡

☛☞✌✍ ✎✏✑✍✒✑✓✔✕✖✗

☛☞✌✍ ✘✙✗✖✚ ✒✑✓✔✕✖✗

✛✞✟✜ ✠✡
✢�

✞ ✠✞
✆ ☎✆ ✣✤✥
✦ ✦

✧

✧✧

✧

✧ ✧✧

✧

✧

✦

✦

✦ �
✁✂✁

✄☎✄ ✆✝✞✟

✠✡☛☞ ✌✍✎☞✏✎✑✒✓✔✕

✠✡☛☞ ✖✗✕✔✘ ✏✎✑✒✓✔✕

✙✚✛✜

✢�
✁✂✁

✄☎✄
✣
✤✥

✁

✁✁

✁

✁ ✁✁

✁

✁

✦

✦

✙✚✛✜

Figure 2.14: For our original domain, denoted by B, we modify the M2M and L2L operations

for calculating the far-field interactions. Left: We calculate the upward equivalent density in-

duced by the domain and all of its immediate neighbors (simply copies of itself, occupying the

space of size (3H)d, centered at the domain of width H) at its parent B∗; this process is contin-

ued up N levels. Right: For passing the downward equivalent densities downward, we modify

the L2L operator to calculate the far-field potential from parent B∗ to its center child, B only; at

the completion of this step, our original domain has a description of its entire periodic far-field

domain in its downward equivalent density, which is in turn passed downward through the tree.

86

procedure, notice that if we consider each ring of copies of B, after N such steps, we have

accounted for
∑N

i=1 3i rings of B. We then pass the influences downward in an L2L or local to

local fashion (again noting that these matrices will be reused so no additional cost is incurred)

as seen in figure 2.14. Here we only need to translate the downward equivalent densities to the

center child of a box. That is, if B is a box with parent B∗ as in figure 2.14, we compute

uB,dL2L = KB∗,B
L2L φB

∗,d. (2.55)

We only need to compute a single KB∗,B
L2L operator since we are only interested in computing

the far-field influence at our original domain, and hence only compute the induced potential at

the box B at the center of the cube of 27 children of B∗. We then can use equation (2.40) to

recover the downward equivalent density for B from uB,dM2L and uB,dL2L.

Algorithm 3 presents pseudocode for computing all far-field interactions for the full domain

up to N steps outward. We ensure the algorithm is performed before the downward L2L pass

in Algorithm 2, modifying to make sure that we begin the downward pass of Algorithm 2 at the

rootlevel; this guarantees that all interactions in the far-field of our domain have been accounted

for. In fact, Algorithm 3 can be performed directly after theM2M phase of Algorithm 2 or right

before the L2L phase.

87

Algorithm 3 Far-Field Interaction Computation for Periodic kiFMM
Let B be the full domain D at the root level, r with equiv. density φB,u and B∗ be the parent of B

for i = 1 to N do

Compute uB,dM2L from copies of B in LBI using equation (2.51)

Compute φB
∗,u using equation (2.54)

Let B = B∗ and B∗ be its parent

end for

Compute φB
∗,d = (KB∗,B∗

L2L)−1
(
uB

∗,d
M2L

)
at top-most level.

for i = N to 1 do

Compute uB,dL2L from its parent’s φB
∗,d using equation (2.55)

Compute φB,d from uB,dM2L and uB,dL2L using equation (2.40)

Let B∗ = B and B its center-most child.

end for

88

For each level of the algorithm in three dimensions, we perform one step of the M2M

computation for the parent box with 27 children for O(27p2) computational complexity. We

perform the FFT and its inverse once at each level as the upward equivalent densities are the

same for all box copies at that level, and the number of boxes in the interaction list, LI , at

each level is 93 − 33 = 702, so the total cost of the augmented M2L phase at each level is

O(p3/2 log (p)+702p3/2). Finally, we perform one L2L computation for a cost ofO(p2), so the

total cost of Algorithm 3 with N steps is O
(
N · (28p2 + p3/2(log(p) + 702)

)
. As N is quite

small, this additional cost is minimal when compared to the overall cost of Algorithm 2.

Remark 2.3. No actual locations are stored, and once the matrices are computed, they can be

reused for a scale-variant kernel (the densities are scaled for the appropriate levels). At the ith

step of the algorithm 3i rings of the domain are accounted for as described earlier, and the jth

ring of the periodic domain contains (2j + 3)3 − (2j + 1)3 copies of the original domain, so

after N steps,
(
3N+1 − 3

)
/2 copies of the domain are accounted for. After going up 12 levels,

we have computed the influence from nearly 800, 000 rings outward. Every box is accounted

for except for those directly adjacent to B. Experiments have shown that setting N to 10 − 12

guarantees a high level of accuracy on the order of 10−8.

In order to account for periodic members of the V -list of a box at any depth in the domain,

we note that at the end of the upward pass of the FMM algorithm, we have a description at every

level of the multipole expansion (or upward equivalent density), so we only need to modify

the interaction lists for every box in B at every level. This can be easily computed during the

upward pass, and the number of interactions added is only near the boundary, so the additional

computations are minimal, and the M2L phase of the algorithm is left largely unchanged. Near-

field interactions are also easily accounted for by augmenting the LBU , LBW , LBX with pointers to

existing box structures and which types of near neighbors they are, allowing us to use existing

89

precomputed tables and coefficients. The additional computational complexity does not alter the

analysis of our algorithm’s complexity from section 2.4.8. In our analysis there, we assumed that

every box could have an upper bound of 189 boxes in LBI for example. While boundary boxes

for the free-space solver have significantly fewer than this, for the periodic solvers, boundary

boxes can now have full-sized computation lists; however, the total number of computations still

fall within our upper bounds.

Finally, we note that some additional balancing may be necessary across the periodic bound-

aries, but this is a straightforward modification of our existing tree-balancing scheme in sec-

tion A.1 as we need to just keep track of periodic nearest neighbors. Another option is to only

balance the original domain and compute unbalanced nearest neighbor interactions on the fly as

described in section A.1.2.

2.6.2 Homogeneous Dirichlet Boundary Conditions

We now consider the following situation for a box D with boundary ∂D:

−∆u = f in D

u = C on ∂D

In particular, we will consider u = 0 on ∂D. In order to solve this problem for a box B

in two dimensions with force f , we can satisfy the boundary condition on its right boundary

(+x-boundary) by reflecting the source points across the boundary and negating the forces. In

order to satisfy the condition on the left boundary (−x boundary), we reflect the source points

across that boundary and negate the values as well. However, this now causes a violation of the

boundary condition across the right boundary, so we repeat on the right side, then the left, etc.

We can also do the same across the top and bottom boundaries. Additionally, we notice that if

90

−fRB and −fLB are the reflections of the source points and forces across the right boundary and

left boundaries, then by symmetry, −fRB = −fLB . In fact, in two dimensions, the entire plane

can be tiled as in figure 2.15. We notice that the pattern begins to repeat itself, and for a general

number of d dimensions, we can in fact tile Rd with copies of a supercell with a small number

of flipped/negated copies of the domain; this supercell is just of size 2d or 4 in two dimensions

and 8 in three dimensions.

Figure 2.15: Left: For a box B with source distribution fB in the dark black box, we reflect fB

across the right boundary and negate it as f̃RB . Repeating this across the other boundaries and

considering symmetries results in the tiling above. The group of boxes surrounded by dotted

lines, denoted as the supercell, tiles the plane, and we can embed this in the periodic solver. In

three dimensions, the group is 8 boxes. Right: More easily seen in a symbolic format, the box

in red represents our original source distribution, with the blue boxes representing the proper

reflections (the shape in black implies the force values are also negated). Again, the union of the

blue and red boxes denote the supercell which tiles the infinite domain.

91

We can now solely focus on the sources inside of the supercell since it tiles the infinite

domain. As a result, for far-field influences on the supercell, we can embed this group into our

periodic solver. Figure 2.15 again shows that this grouping is of size four for two dimensions,

and in three dimensions, this supercell will be of size eight as we also have to reflect in the z-

direction. On first glance, it looks as if this approach increases our computations and storage by

an order of 2d; however, careful implementation allows us to largely recover this overhead.

In order to see how we can avoid unnecessary computation, we begin by looking at a leaf

box B that is on the boundary of our original domain (not the supercell), denoted as D as in

figure 2.16 for two dimensions. As is seen, the box B has reflections of itself as direct neighbors

as well as members of its interaction list. That is, B is influenced by reflected copies of itself.

Figure 2.16: For some domainD in two dimensions, we show a single leafB inD’s sub-domain

(all other leaves are not drawn here) as well as reflections of B across the boundaries such that

the Dirichlet boundary condition of u = 0 is satisfied there. Here, we consider that B has itself

as well as its reflections as direct neighbors in LBU , its near-neighbor interaction list.

We recall that for a boxB and U ∈ LNB , equation 2.42 dictates that we calculate the influence

92

from U via its polynomial approximation, γU . Now we consider if U is simply a reflection of

B across the +x-boundary; that is, its positions are reflected in the x-direction and sources are

negated as described above. We call this box B′ = U here. We recall from equation (2.24) that

if B has smooth force gB(x) and center cB at level `,

gB(x) =

Nk∑
j=1

γBj βj

(
2`(x− cB)

)
. (2.56)

Defining x = (x, y, z), cB = (cxB, cyB, czB), and x̄ = x − cB , then βj = Pa(x̄)Pb(ȳ)Pc(z̄)

where a+b+c = j (j < Nk = k(k+1)(k+2)/6 (for approximation order k and monomial Pα

of order α). For a point x′ ∈ B′, which is simply a reflection of x ∈ B across the +x-boundary,

we now have

βj

(
2`(x′ − cB′)

)
= Pa(x̄

′)Pb(ȳ
′)Pc(z̄

′)

= (−1)aPa(x̄)Pb(ȳ)Pc(z̄)

= (−1)aβj

(
2`(x− cB)

)
,

where a is simply the order (or parity) of the x-monomial. Therefore, we can very simply

compute γB
′

as

γB
′

= −TxγB,

for diagonal matrix Tjj = (−1)a for polynomial βj with a again being the order of Pa. We note

that we negate Tx because the sources, gB are negated along with their locations being reflected.

Further, it can easily be seen how to compute reflection matrices Ty and Tz for reflections across

the +y and +z-boundaries in three dimensions. Further, we construct Txy as TyTx, etc. In total,

we need only 7 such diagonal matrices in three dimensions: Tx, Ty, Tz , Tyx, Tzx, Tzy and Tzyx.

Also, Tx, Ty, Tz , and Tzyx will always be negated (and are stored as such) due to gB being

93

negated across boundaries; all other matrices are not negated as the negations across boundaries

cancel each other out.

We note that in practice, we need not compute and store all of the T matrices as they are di-

agonal with each entry being ±1, so transforming γB can be done quickly in O(Nk) operations.

Additionally, the number of leaf boxes for which this is necessary is relatively small as it only is

needed when a box B has members of LBU across the domain boundaries.

The other component we need is a way to quickly construct the upward equivalent densities

we will need for a box B’s interaction list. That is, consider that V ′ ∈ LBV is a box which is a

reflection of some box V (not necessarily in LBV) across one of the domain boundaries; without

loss of generality, we will assume V ′ is a reflection of V across the +x boundary of the domain

D. In order to compute the influence of V ′ onB, we need to quickly construct φV
′,u, the upward

equivalent density of V ′. There are two cases we need to consider: if V ′ is a leaf or a non-leaf.

First, if V ′ is a leaf, we normally construct φV
′,u from equations (2.29) and (2.30). As

with the near-field interactions, we need to construct a transformation of γV
′

from γV . With

the construction of φV
′,u, however, we note that the precomputed operator, FV

′
S2M (modifying

equation (2.30)) has entries

F V
′

j (x′) =

∫
V ′
βj

(
2`(y − cV ′)

)
K(x′,y)dy, for x′ ∈ xB

′,u. (2.57)

As above, we can see that F V
′

j = (−1)aF Vj where a is the order of the monomial Pa used

in the construction of βj(y − cV) = Pa(x̄)Pb(ȳ)Pc(z̄). That is, using the same definitions for

Tx, etc. as above:

FV
′

S2M = TxF
V
S2M .

94

Further, it can easily be seen from this relationship and equation (2.31),

K[yV
′,u, φV

′,u](x′i) =

Nk∑
j=1

F V
′

j (x′i)γ
V ′
j

=

Nk∑
j=1

F Vj (xi)γ
V
j , for x′i ∈ xV

′,u and xi ∈ xV,u

As x′ is a reflection of x, and the upward equivalent surface yV
′,u is also a reflection of yV,u,

φV
′,u is a permutation of φV,u. In figure 2.17, we indicate how the locations of the check and

equivalent surfaces are reflected.

xB' ,u
yB'L ,u

Equ. Surface
Check Surface

xB' ,u
yB'L ,u

'
'

B B'

Figure 2.17: For some box B with upward check surface xB,u and equivalent surface yB,u,

let B′ be a single reflection of B (and negation of its smooth force distribution) across some

boundary. Then, the relative positions of the check and equivalent surfaces, xB
′,u and yB

′,u

respectively are mapped back to their reflections in order to permute φB,u to φB
′,u

More specifically, assuming we have already computer φV,u in the S2M pass, φV
′,u is simply

95

computed as (still assuming we are reflecting across the +x boundary)

−PxφV,u,

for permutation matrix Px where the entry Pij = 1 if x′i is the reflected location of xj . We

again note that we need only seven such permutation matrices, corresponding to our reflections:

−Px, −Py, −Pz , Pyx, Pzx, Pzy, −Pzyx. Those which are negative represent a single or odd

combination of reflections, in which the smooth source gV
′

is a negation of gV along with a

reflection of source locations.

Remark 2.4. The permutation matrices, P in practice are precomputed, stored, and loaded at

runtime for each specific numerical precision, np; that is, P is of size p×p for p sample locations

on the upward check surface. In practice, as these matrices are largely zero, we store them as

arrays and do a fast O(p) swap of array entries to build φV
′,u from φV,u

We have discussed how to build the reflected upward equivalent densities when a box is a

leaf, but when a box is a non-leaf, the discussion is equivalent. If V ′ lies in a reflected domain of

D, so do all of its children, C ′, which are reflections of some boxes C ∈ D; hence, the operator,

P which permutes φC,u to φC
′,u also permutes φV,u to φV

′,u.

For the upward M2L pass now, we compute the interactions for all boxes B from their

interaction lists LBV for all boxes enclosed inside of the original domain D at a specific level `. If

we notice that a box V ∈ LBV also has a reflection V ′ which is in some box’s interaction list, we

permute φV,u → φV
′,u and compute the influence from V ′. This allows us to maintain the same

general structure for performing shared memory parallelization for the M2L step as described

in section 3.3.

For a box B, all of its ancestors in the tree T lie directly inside of the domain D or outside

of the supercell that tiles the infinite domain, as in the periodic solver. Hence, in the downward

pass, there is no permutation of downward equivalent densities.

96

Finally, we note that as in the periodic solver, at the completion of the M2M computation,

we have a description for the entire domain D’s equivalent density, φD,u. In order to use the

periodic solver for computing the potential from the far-field of our domain, we let S be the

supercell of D and its rotated/negated copies as described above. We then compute the upward

equivalent density of S using equation (2.58).

φS,u =
∑
Di

(KS,S
M2M)−1KDi,S

M2MφDi,u =
∑
Di

TDi,S
M2M

(
PiφD,u

)
. (2.58)

That is, for i ∈ 0, x, y, z, yx, zx, zy, zyx, we apply the permutation operator to φD,u and ap-

ply theM2M operator (i = 0 implies an identity operator or no permutation). As the supercell’s

children have the same orientation as the regular M2M operator in section 2.4.2, we can reuse

the existing operators and need no additional storage. We now call Algorithm 3 with S as the

root of our domain with density φS,u. At the end of the algorithm, we have a description for the

downward equivalent density at S, φS,d, which we then translate solely to the original domain

D’s downward check potential, uD,dL2L using equation (2.39). As before, we recover the down-

ward equivalent density for D using (2.40) applied to uD,dL2L and uD,dM2L (computed as described

above). We note that the additional cost to the existing periodic volume solver is minimal: one

additional M2M computation of cost O(8p2) and one L2L operation of cost O(p2).

Finally, we note that for the Dirichlet solver, there is no need to worry about tree-balancing

across the domain boundary as in the periodic case. In order to see why, we consider the extreme

case presented in figure 2.18. As can be seen, once all rotations are performed to compose the

supercell, a boxB will only gain rotated copies of boxes in its existing near-neighbor list; hence,

the supercell is already fully-balances, assuming the original domain has been balanced.

97

Figure 2.18: Left: A fully-balanced domain with multiple levels approaching one corner of the

boundary; Right: After performing all rotations to the domain, the supercell is fully-balanced

across all boundaries.

98

3
NUMERICAL RESULTS FOR VOLUME SOLVER

IN THE BOX

The three-dimensional kernel-independent elliptic PDE volume solver algorithm has been im-

plemented in C++, and we have tested several kernels and source and target point distributions

in section 3.1. The accuracy of various operators and the effects of regularization are consid-

ered in section 3.2. Our tests were run on an Intel Xeon-based X7560 (2.27GHz 64 bit) system

with 16 CPUs and 128GB of RAM; the major computation loops are accelerated with OpenMP

(Chapman et al., 2007) as discussed in section 3.3.

3.1 Overall Approximation Error

In order to test the accuracy and speed of the full algorithm, we consider three specific equa-

tions: the Poisson equation (2.7), the Modified Helmholtz equation (2.8), and the Stokes equa-

tions (2.9). These equations represent our canonical set as the corresponding kernels highlight

the ability of our algorithm to handle scalar, scale-variant, and matrix kernels, respectively. Fol-

lowing results for these three equations in free-space, we then consider periodic and Dirichlet

boundary conditions on the unit box as well as an example in which we combine smooth and

singular sources.

3.1.1 Poisson Equation

We first test the free-space Poisson solver on three different types of problems designed to show

how our algorithm handles increasing levels of complexity in the force distribution.

We use an adaptive-refinement strategy similar to (Ethridge and Greengard, 2001). For this,

99

we compute a kth-order polynomial approximation, γB , to the force gB(x) sampled on a k×k×k

grid. We let g̃B be the force evaluated on a refined 2k× 2k× 2k grid. If
∣∣∣∣gB(x)− g̃B(x)

∣∣∣∣
2
>

εrhs, B is subdivided, and the octree is balanced as needed. Three force distributions, used in

Examples (1-3) below are shown in Figure 3.1.

−1

0

1

−1

0

1
−1

−0.5

0

0.5

1

 3.000

4.000

5.000

6.000

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

 3.000

4.000

5.000

6.000

−1

0

1

−1

0

1
−1

−0.5

0

0.5

1

 3.000

4.000

5.000

6.000

7.000

−0.5
0

0.5
1

−1

0

1
−1

−0.5

0

0.5

1

 3.000

4.000

5.000

6.000

7.000

−1

0

1

−1

0

1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

 2.000

3.000

4.000

5.000

6.000

7.000

8.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

Figure 3.1: Sample force distributions based on adaptive refinement. Each point, colored by

its tree level, `, indicates the center of a leaf box, B. Left: A single sharply-peaked Gaussian

function; Middle: A discontinuous force distribution, equal to one inside a sphere and zero

outside; Right: A discontinuous force distribution involving oscillatory functions restricted to

the interiors of a set of three spheres.

Example 1. The first experiment tests the accuracy of our method for solving the Poisson

equation (equation (2.7) with kernel (2.10)) with a fast-decaying smooth right-hand side.

100

−∆u(x) =
8∑
i=0

−e−L||x−xi||
2
(

4L ||x− xi||2 − 6L
)

, L = 250

with solution

u(x) =
8∑
i=0

−e−L||x−xi||
2

,

where xi = (± 3
40 ,±

3
40 ,±

3
40) inside of the [−1, 1]3 box. This test requires a high degree of

adaptivity to achieve good accuracy with a limited number of points.

In Table 3.1, εfmm is the precision of the translation operators, εrhs is the refinement criterion

for the adaptive refinement of the source distribution, and M` is the number of leaves in the tree

T with LT levels. The number of points Npts is computed as M`k
3 where k3 is the number of

points per leaf, chosen to be sufficiently large to build the polynomial approximation of order

k. The computation time, TFMM , is given in seconds, and the Rate is in points per second. E2

and E∞ are the relative L2 and L∞ errors, respectively. Timings include FMM evaluation times

only; when the precision εfmm remains constant, the rate of work per source and target point

remains close to constant, as we would expect since the FMM algorithm scales linearly.

101

εfmm εrhs M` Npts LT E2 E∞ TFMM Rate

Fourth-Order Force Approximation

10−2 10−2 736 47104 6 2.3E − 02 2.4E − 02 9.15E − 03 5.15E + 06

10−4 10−2 736 47104 6 1.1E − 03 6.8E − 04 2.43E − 02 1.94E + 06

10−4 10−4 3088 197632 7 1.1E − 04 2.7E − 04 9.66E − 02 2.05E + 06

10−6 10−4 3088 197632 7 3.8E − 05 2.5E − 05 3.79E − 01 5.21E + 05

10−6 10−6 19328 1236992 8 3.8E − 06 3.6E − 06 2.39E + 00 5.18E + 05

10−8 10−6 19328 1236992 8 3.7E − 06 1.3E − 06 6.21E + 00 1.99E + 05

10−8 10−8 143088 9157632 9 1.6E − 07 8.8E − 08 4.53E + 01 2.02E + 05

Sixth-Order Force Approximation

10−4 10−4 1408 304128 6 1.1E − 04 2.3E − 04 1.10E − 01 2.76E + 06

10−6 10−4 1408 304128 6 1.4E − 05 3.5E − 05 1.87E − 01 1.62E + 06

10−6 10−6 4936 1066176 7 9.0E − 07 2.2E − 06 6.67E − 01 1.60E + 06

10−8 10−6 4936 1066176 7 3.3E − 07 1.6E − 07 1.62E + 00 6.60E + 05

10−8 10−8 20112 4344192 8 2.4E − 08 6.2E − 08 6.87E + 00 6.33E + 05

10−10 10−8 20112 4344192 8 1.8E − 08 1.0E − 08 1.58E + 01 2.76E + 05

10−10 10−10 92072 19887552 9 6.3E − 09 9.7E − 09 7.51E + 01 2.65E + 05

Eighth-Order Force Approximation

10−6 10−6 2024 1036288 7 9.2E − 07 3.5E − 06 4.67E − 01 2.22E + 06

10−8 10−6 2024 1036288 7 3.7E − 07 8.2E − 07 7.42E − 01 1.40E + 06

10−8 10−8 5440 2785280 7 1.9E − 08 6.6E − 08 2.11E + 00 1.32E + 06

10−10 10−8 5440 2785280 7 7.7E − 09 7.6E − 09 4.36E + 00 6.40E + 05

10−10 10−10 22800 11673600 8 4.1E − 09 5.6E − 09 1.94E + 01 6.00E + 05

10−12 10−10 22800 11673600 8 2.6E − 09 4.7E − 09 4.16E + 01 2.81E + 05

10−12 10−12 50352 25780224 9 2.1E − 09 4.6E − 09 9.21E + 01 2.80E + 05

Table 3.1: Free-Space Poisson Equation, Example 1: Gaussian bump at the origin numerical

results.

102

Example 2. In this example, we consider a discontinuous right-hand side, with g(x) = 1

inside a sphere of radius R = 0.75, and g(x) = 0 outside the sphere. Letting r = ||x||, the

problem becomes

−∆u(x) =

 1 if r ≤ R

0 else

with solution

−∆u(x) =

(
R2 − r2

)
/6 +R2/3 if r ≤ R

R3/3r2 else

 .

While this problem can be handled analytically, it serves as a useful test of performance on

adaptive data structures that are refined in the neighborhood of a surface. The number of points

indicates the total number of points both inside and outside the sphere. Since the coefficient

representation of the force for a leaf node entirely outside of the sphere is zero, these boxes are

ignored in all evaluation phases; this increases the computed rate somewhat. A greater speedup

is achieved from the observation that leaf nodes entirely in the interior have a constant source

distribution, so that only one polynomial coefficient is non-zero. This significantly accelerates

both the near-field and S2M calculation stages. Results are shown in Table 3.2.

103

εfmm εrhs M` Npts LT L2 L∞ TFMM Rate

k = 4, Fourth-Order Force Approximation

10−2 10−2 232 14848 4 1.1E − 02 1.6E − 02 1.83E − 03 8.1E + 06

10−3 10−3 1184 75776 5 4.3E − 03 4.6E − 03 1.10E − 02 6.9E + 06

10−4 10−4 5888 376832 6 1.4E − 04 2.5E − 04 1.13E − 01 3.3E + 06

k = 6, Sixth-Order Force Approximation

10−5 10−5 11432 2469312 7 1.6E − 05 3.3E − 05 6.21E − 01 4.0E + 06

10−6 10−6 80088 17299008 8 7.2E − 06 1.8E − 05 6.06E + 00 2.8E + 06

k = 8, Eighth-Order Force Approximation

10−7 10−7 127856 65462272 8 9.4E − 07 3.3E − 06 1.89E + 01 3.5E + 06

10−8 10−8 528984 270839808 10 3.7E − 07 9.8E − 07 1.23E + 02 2.2E + 06

10−9 10−9 2074360 1062072320 10 3.2E − 08 2.6E − 07 6.49E + 02 1.6E + 06

Table 3.2: Free-Space Poisson Equation, Example 2: Discontinuous Force numerical results.

104

Example 3. For our third example, we replicate an experiment from (McCorquodale et al.,

2007) for a highly-oscillatory force with discontinuities along multiple surfaces.

fm(r) =

 ((r − r2) sin (2mπr))2 if r < 1

0 if r ≥ 1

−∆u(x) =

1

R3

2∑
i=0

fm(|x− ci|/R), (3.1)

where c0 = (3/16, 7/16, 13/16), c1 = (7/16, 13/16, 3/16), c2 = (13/16, 3/16, 7/16), R =

0.05, and the wavelength of fm is λm = R/(2m) = (1/40m). Defining

φm(r) =
(10r6 − 28r5 + 21r4 − 7)

840
+

(60r − 120)

rλ6
m

− 9

λ4
m

+

[
(300r − 120)

rλ6
m

−+
(30r2 − 36r + 9)

λ4
m

+
(r4 − 2r3 + r2)

2λ2
m

]
cos (rλm)

+

[
− 360

rλ7
m

+
(120r2 − 96r + 12)

rλ5
m

+
(5r3 + 8r2 − 3r)

λ3
m

]
sin (rλm), and

θm(r) =

(
360

λ6
m

− 12

λ4
m

− 1

120

)
/r,

we write the solution to equation (3.1) as

uexact(x) =

φ(||x− c0|| /R) +
∑

i=1,2 θ(||x− ci|| /R) if ||x− c0|| < R

φ(||x− c1|| /R) +
∑

i=0,2 θ(||x− ci|| /R) if ||x− c1|| < R

φ(||x− c2|| /R) +
∑

i=0,1 θ(||x− ci|| /R) if ||x− c2|| < R∑2
i=0 θ(||x− ci|| /R) else

In order to compare our results to (McCorquodale et al., 2007), we use the error metric in-

troduced there. Let εB be the vector of errors calculated as the difference between the calculated

and exact solutions on B and calculate the following norm over all leaf boxes.

105

∣∣∣∣εBall∣∣∣∣2 =
∑
B

(∫
εB

||uexact||∞

) 1
2

.

As indicated in (McCorquodale et al., 2007), ∀i, j = 0, 1, 2, i 6= j

∣∣∣∣uexact∣∣∣∣∞ =

∣∣∣∣(− 6

λ4
m

− 1

120

)
/R+

(
720

λ6
m

− 24

λ4
m

− 1

120

)
/ ||ci − cj ||

∣∣∣∣
Our automatic refinement strategy refines within or near the sphere surfaces, with refinement

taking place in the exterior of the spheres only for the purpose of tree-balancing. We build

coefficients only on leaf boxes which contain non-zero source distributions: either interior to or

intersecting one of the three spheres. Results are shown in Table 3.3.

While the performance of our code cannot be compared easily to the optimized and paral-

lelized scheme presented in (McCorquodale et al., 2007), we have implemented much higher

order accurate schemes. Thus, as expected, we are able to reach comparable accuracies with

significantly fewer points. To compare the number of points required, we consider the number

of points in the finest level solve of their three-level examples. For m = 7, we achieve accuracy

on par with their most accurate tests with approximately 1/100 as many points. For m = 15,

we require approximately 1/5 as many points, and with 1/4 as many points, we achieve about

two orders of magnitude greater accuracy. For m = 30, we achieve equivalent results with ap-

proximately 1/4 as many points. Additionally, we extended the examples for an even higher

wavenumber component (m = 60), decreasing the wavelength to 4.1710−4, and achieving good

results with fewer than 109 points.

106

m εfmm εrhs M` Npts LT k
∣∣∣∣εBall∣∣∣∣2 ∣∣∣∣εBall∣∣∣∣∞

1 10−6 10−6 3984 254976 8 4 2.3E − 07 2.2E − 05

1 10−8 10−8 7296 1575936 9 6 1.1E − 08 7.1E − 07

1 10−10 10−10 24144 12361728 9 8 1.6E − 10 1.8E − 08

7 10−6 10−6 93816 6004224 10 4 2.2E − 06 1.8E − 04

7 10−8 10−8 195984 42332544 10 6 9.3E − 09 1.1E − 06

7 10−10 10−10 228312 116895744 10 8 1.1E − 10 4.3E − 08

15 10−6 10−6 140568 8996352 10 4 6.4E − 07 8.6E − 05

15 10−8 10−8 1092456 235970496 11 6 7.2E − 08 4.2E − 06

15 10−10 10−10 1596672 817496064 11 8 4.8E − 10 6.1E − 08

30 10−6 10−6 148272 9489408 10 4 5.8E − 07 6.2E − 05

30 10−8 10−8 1491216 322102656 11 6 2.1E − 08 3.8E − 06

30 10−10 10−10 1720152 880717824 12 8 4.9E − 09 2.0E − 06

60 10−6 10−6 150288 9618432 11 4 6.0E − 07 9.6E − 05

60 10−8 10−8 1502592 324559872 11 6 9.2E − 08 1.4E − 05

60 10−10 10−9 1659312 849567744 11 8 7.7E − 08 1.7E − 05

Table 3.3: Free-Space Poisson Equation, Example 3: Discontinuities along several spherical

surfaces containing oscillating source distributions numerical results.

107

3.1.2 Modified Helmholtz Equation

For the Modified Helmholtz equation (equation (2.8) with kernel (2.11)), we use a right-hand

side similar to that of Example 1 for the Poisson equation, setting the Helmholtz parameter

(inverse Debye length) to α = π:

αu(x)−∆u(x) =
8∑
i=0

−e−L||x−xi||
2
(

4L ||x− xi||2 − 6L− α
)

, L = 250

with solution

u(x) =

8∑
i=0

−e−L||x−xi||
2

,

for xi = (± 3
40 ,±

3
40 ,±

3
40) inside of the [−1, 1]3 box. All translation matrices are computed

to a precision of εfmm/10. These matrices can be computed at run-time in a lazy manner; if

α is known before run-time, these tables can be precomputed, stored, and loaded as necessary.

Additionally, since the right-hand side is the same as in Example 1 for the Poisson equation, we

use the same point distribution; hence, the timings are essentially the same as Experiment 1 and

are omitted here. Results are shown in Table 3.4.

108

εfmm εrhs M` Npts LT E2 E∞

Fourth-Order Force Approximation

10−2 10−2 736 47104 6 2.3E − 02 2.4E − 02

10−4 10−2 736 47104 6 6.0E − 04 5.6E − 04

10−4 10−4 3088 197632 7 1.1E − 04 1.8E − 04

10−6 10−4 3088 197632 7 2.4E − 05 2.1E − 05

10−6 10−6 19328 1236992 8 2.3E − 06 3.4E − 06

10−8 10−6 19328 1236992 8 2.0E − 06 8.7E − 07

10−8 10−8 143088 9157632 9 9.9E − 08 9.0E − 08

Sixth-Order Force Approximation

10−4 10−4 1408 304128 6 1.1E − 04 2.4E − 04

10−6 10−4 1408 304128 6 1.4E − 05 3.5E − 05

10−6 10−6 4936 1066176 7 8.5E − 07 2.5E − 06

10−8 10−6 4936 1066176 7 1.4E − 07 1.3E − 07

10−8 10−8 20112 4344192 8 1.5E − 08 7.5E − 08

10−10 10−8 20112 4344192 8 8.9E − 09 7.4E − 09

10−10 10−10 92072 19887552 9 2.2E − 09 5.7E − 09

Eighth-Order Force Approximation

10−6 10−6 2024 1036288 7 1.9E − 06 4.7E − 06

10−8 10−6 2024 1036288 7 1.8E − 07 4.6E − 07

10−8 10−8 5440 2785280 7 1.2E − 08 1.4E − 08

10−10 10−8 5440 2785280 7 7.7E − 09 7.6E − 09

10−10 10−10 22800 11673600 8 3.4E − 09 5.6E − 09

10−12 10−10 22800 11673600 8 1.3E − 09 2.0E − 09

10−12 10−12 50352 25780224 9 2.0E − 09 2.6E − 09

Table 3.4: Free-Space Modified Helmholtz Equation example: Gaussian bump at the origin

numerical results.

109

3.1.3 Stokes Equations

We test the ability of our code to handle matrix kernels by solving the Stokes equations (equa-

tion (2.9) with kernel (2.12)) with the following divergence-free fast-decaying force.

−µ∆u(x) +∇p(x) =
8∑
i=0

(
8L3 ||x− xi||2 − 20L2

)
e−L||x−xi||

2

[∇× (x− xi)]

with solution

u(x) =
2L

µ

8∑
i=0

e−L||x−xi||
2

[∇× (x− xi)]

for xi = (± 3
40 ,±

3
40 ,±

3
40), µ = 1, L = 125 inside of the [−1, 1]3 box. Errors are again similar

to those seen in the fast-decaying experiments from examples 1 and 4; timings are worse, as

expected, since we are dealing with nine times as many degrees of freedom per point. Results

are shown in in Table 3.5.

110

εfmm εrhs M` Npts LT E2 E∞ TFMM Rate

Fourth-Order Force Approximation

10−2 10−2 2038 130432 6 1.3E − 01 1.5E − 01 1.35E − 01 9.67E + 05

10−4 10−2 2038 130432 6 1.0E − 03 8.4E − 04 9.49E − 01 1.37E + 05

10−4 10−4 10606 678784 7 9.1E − 04 9.4E − 04 5.11E + 00 1.33E + 05

10−6 10−4 10606 678784 7 8.4E − 06 1.1E − 05 2.24E + 01 3.04E + 04

10−6 10−6 69140 4424960 8 7.5E − 06 1.4E − 05 1.47E + 02 3.02E + 04

10−8 10−6 69140 4424960 8 2.2E − 07 4.4E − 07 4.83E + 02 9.16E + 03

10−8 10−8 484408 31002112 9 1.4E − 07 4.4E − 07 3.23E + 03 9.61E + 03

Sixth-Order Force Approximation

10−4 10−4 2696 582336 7 4.9E − 04 8.6E − 04 1.57E + 00 3.70E + 05

10−6 10−4 2696 582336 7 4.3E − 06 9.9E − 06 5.99E + 00 9.71E + 04

10−6 10−6 10396 2245536 7 8.1E − 06 1.3E − 06 2.36E + 01 9.51E + 04

10−8 10−6 10396 2245536 7 1.6E − 07 4.1E − 07 7.79E + 01 2.88E + 04

10−8 10−8 59830 12923280 8 1.4E − 07 4.3E − 07 4.11E + 02 3.15E + 04

10−10 10−8 59830 12923280 8 5.4E − 09 1.3E − 08 1.03E + 03 1.25E + 04

10−10 10−10 295100 63741600 9 5.2E − 09 1.1E − 08 5.31E + 03 1.20E + 04

Eighth-Order Force Approximation

10−6 10−6 4894 2505728 7 4.8E − 06 1.5E − 05 1.43E + 01 1.75E + 05

10−8 10−6 4894 2505728 7 8.0E − 08 4.3E − 07 4.14E + 01 6.06E + 04

10−8 10−8 12860 6584320 7 1.5E − 07 4.5E − 07 1.03E + 02 6.41E + 04

10−10 10−8 12860 6584320 7 6.0E − 09 1.5E − 08 2.37E + 02 2.78E + 04

10−10 10−10 55854 28597248 8 4.7E − 09 1.6E − 08 1.05E + 03 2.73E + 04

10−12 10−10 55854 28597248 8 6.3E − 09 8.8E − 09 1.96E + 03 1.46E + 04

10−12 10−12 132490 67834880 9 5.6E − 09 7.0E − 09 4.46E + 03 1.52E + 04

Table 3.5: Free-Space Stokes Equation example numerical results.

111

3.1.4 Periodic Boundary Conditions

In section 2.6.1, we discussed how we use a modification of the existing kernel-independent

framework to impose periodic boundary conditions. To review, it is straightforward to extend

the solver infrastructure described above to the case of periodic boundary conditions, using the

the classical method of images of Lord Rayleigh (Rayleigh, 1892), following the discussion of

(Ethridge and Greengard, 2001). The influence of all separated image boxes can be incorporated

using either a recursive approach (Helsing, 1994) or a scheme based on lattice sums (Greengard

and Rokhlin, 1987). In either case, the additional work depends only on εfmm and not on

the number of degrees of freedom. The main difference is that the unit cell B now has near

neighbors, whose influence must be accounted for. This, too, has relatively little impact on

performance. A small number of additional boxes are added to both the interaction and near

neighbor lists, but no additional data structures are created; instead, everything is handled via

careful book-keeping to minimize additional memory consumption.

As an example, we consider the Poisson problem with periodic boundary conditions

−∆u(x) = 3CM2π2 sin(πMx) sin(πMy) sin(πMz),

for which the solution is

u(x) = C sin(πMx) sin(πMy) sin(πMz).

We conduct our experiments for a non-trivial oscillatory force, choosingC = 7 ANDM = 5

on the domain [−1, 1]3 with varying degrees of depth and precision. Plots of sample slices for

the force and solution are shown in figure 3.2, and we check the relative L2 and L∞ with results

shown in Table 3.6.

112

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−4000

−3000

−2000

−1000

0

1000

2000

3000

4000

x
y

f

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−5

0

5

x
y

u

Figure 3.2: Plot of Periodic Boundary Conditions Example 1. We look at a single slice of the

force on the top and solution on the bottom for z = −0.25. The nearly-uniform nature of this

test force results in a low level of adaptive refinement.

113

εfmm εrhs M` Npts LT E2 E∞ TFMM Rate

Fourth-Order Force Approximation

10−2 10−2 32768 2097152 6 2.6E − 02 3.3E − 02 6.37E − 01 3.29E + 06

10−4 10−2 32768 2097152 6 1.1E − 03 1.4E − 03 2.30E + 00 9.12E + 05

10−4 10−4 262144 16777216 7 2.9E − 04 7.6E − 04 1.55E + 01 1.08E + 06

10−6 10−4 262144 16777216 7 1.6E − 05 2.4E − 05 3.79E + 01 4.43E + 05

10−6 10−6 2097152 134217728 8 5.6E − 06 1.9E − 05 3.18E + 02 4.22E + 05

Sixth-Order Force Approximation

10−2 10−2 32768 7077888 6 2.7E − 02 3.4E − 02 9.10E − 01 7.78E + 06

10−4 10−2 32768 7077888 6 2.8E − 04 7.4E − 04 1.98E + 00 3.57E + 06

10−4 10−4 37248 8045568 7 2.7E − 04 8.2E − 04 2.30E + 00 3.50E + 06

10−6 10−4 37248 8045568 7 1.8E − 05 3.2E − 05 5.21E + 00 1.54E + 06

10−6 10−6 262144 56623104 7 5.5E − 06 1.8E − 05 3.86E + 01 1.47E + 06

10−8 10−6 262144 56623104 7 1.5E − 07 4.6E − 07 9.66E + 01 5.86E + 05

10−8 10−8 2097152 452984832 8 1.0E − 07 3.0E − 07 8.05E + 02 5.63E + 05

Eighth-Order Force Approximation

10−2 10−2 4096 2097152 5 1.8E − 02 2.8E − 02 3.22E − 01 6.51E + 06

10−4 10−2 4096 2097152 5 6.9E − 04 1.5E − 03 4.41E − 01 4.72E + 06

10−4 10−4 32768 16777216 6 3.7E − 04 9.5E − 04 3.38E + 00 4.96E + 06

10−6 10−4 32768 16777216 6 7.0E − 06 1.9E − 05 6.28E + 00 2.67E + 06

10−6 10−6 242432 124125184 7 6.5E − 06 2.0E − 05 4.81E + 01 2.58E + 06

10−8 10−6 242432 124125184 7 2.0E − 07 9.1E − 07 1.02E + 02 1.22E + 06

10−8 10−8 262144 134217728 7 1.4E − 07 5.7E − 07 1.04E + 02 1.29E + 06

10−10 10−8 262144 134217728 7 2.6E − 08 6.1E − 08 2.29E + 02 5.86E + 05

10−10 10−10 2097152 1073741824 8 9.0E − 09 4.3E − 08 1.87E + 03 5.75E + 05

Table 3.6: Periodic Boundary Conditions example numerical results.

114

Compared to non-periodic examples, the rate of the solver is slightly slower, as would be

expected due to an increase in the sizes of interaction and near-neighbor lists, especially near the

box boundaries. However, we see that we still obtain proper scaling as we increase the problem

size and maintain the same εfmm precision, as desired.

It is straightforward to extend this approach to a variety of homogeneous Dirichlet, Neumann

or mixed boundary conditions by the method of images as well with very little additional effort

as previously described. We show two more examples for the Dirichlet boundary examples, one

for verification of the implementation and comparison to the periodic solver, timing-wise, and a

second example for a highly-adaptive right-hand side.

3.1.5 Dirichlet Boundary Conditions

We currently have only implemented Dirichlet boundary conditions in cases where u(x) = 0 on

∂Ω, the boundary of our domain, in this case the [−1, 1]3 box. We present two test examples. The

first is nearly-identical example as the periodic boundary solver above for nearly-uniform refine-

ment to display any affect on the timings of our solver, and the second is a highly-nonuniform

right-hand side with a great degree of adaptivity near a corner of the box domain in order to

show the periodic algorithm handles more complexity in its interaction lists.

Example 1. As an example, we consider the source function

f(x) = 3CM2π2 sin(πM(1 + x)) sin(πM(1 + y)) sin(πM(1 + z)),

for which the solution with boundary conditions of u = 0 on our domain [−1, 1]3 is

u(x) = C sin(πM(1 + x)) sin(πM(1 + y)) sin(πM(1 + z)).

As can be seen, this is simply a shifted form of the example one above. We again choose

C = 5 AND M = 7 and check the relative L2 and L∞ with results shown in Table 3.7.

115

εfmm εrhs M` Npts LT E2 E∞ TFMM Rate

Fourth-Order Force Approximation

10−2 10−2 32768 2097152 6 2.6E − 02 3.3E − 02 6.56E − 01 3.20E + 06

10−4 10−2 32768 2097152 6 1.1E − 03 1.4E − 03 2.40E + 00 8.74E + 05

10−4 10−4 262144 16777216 7 2.9E − 04 7.6E − 04 1.78E + 01 9.42E + 05

10−6 10−4 262144 16777216 7 1.6E − 05 2.4E − 05 4.00E + 01 4.19E + 05

10−6 10−6 2097152 134217728 8 5.5E − 06 1.9E − 05 3.25E + 02 4.13E + 05

Sixth-Order Force Approximation

10−2 10−2 32768 7077888 6 2.6E − 02 3.4E − 02 8.18E − 01 8.65E + 06

10−4 10−2 32768 7077888 6 2.8E − 04 7.4E − 04 2.53E + 00 2.80E + 06

10−4 10−4 37248 8045568 7 2.7E − 04 8.2E − 04 2.87E + 00 2.80E + 06

10−6 10−4 37248 8045568 7 1.8E − 05 3.2E − 05 7.22E + 00 1.11E + 06

10−6 10−6 262144 56623104 7 5.5E − 06 1.8E − 05 4.77E + 01 1.19E + 06

10−8 10−6 262144 56623104 7 1.4E − 07 4.5E − 07 1.21E + 02 4.68E + 05

10−8 10−8 2097152 452984832 8 1.1E − 07 5.1E − 07 8.92E + 02 5.08E + 05

Eighth-Order Force Approximation

10−2 10−2 4096 2097152 5 1.8E − 02 2.8E − 02 3.78E − 01 5.55E + 06

10−4 10−2 4096 2097152 5 6.9E − 04 1.5E − 03 5.72E − 01 3.67e+ 06

10−4 10−4 32768 16777216 6 3.7E − 04 9.5E − 04 4.10E + 00 4.10E + 06

10−6 10−4 32768 16777216 6 7.0E − 06 1.9E − 05 8.28E + 00 2.03E + 06

10−6 10−6 242432 124125184 7 6.5E − 06 2.1E − 05 5.60E + 01 2.22E + 06

10−8 10−6 242432 124125184 7 2.0E − 07 9.0E − 07 1.18E + 02 1.05E + 06

10−8 10−8 262144 134217728 7 1.3E − 07 5.5E − 07 1.25E + 02 1.07E + 06

10−10 10−8 262144 134217728 7 1.3E − 08 5.2E − 08 3.03E + 02 4.43E + 05

10−10 10−10 2097152 1073741824 8 8.8E − 09 3.1E − 08 2.54E + 03 4.23E + 05

Table 3.7: Dirichlet Boundary Conditions first example numerical results.

116

Since the test problems are nearly identical, the sizes of the test cases are equivalent, allow-

ing us to see that the timings are slightly larger and the rates are slightly slower. Indeed, this is

expected given that we need to rotate and translate upward equivalent densities and polynomial

approximations in order to account for the interactions and contributions for boxes across the

boundaries and inside of the supercell, as discussed in section 2.6.1. As desired, however, the

differences are minimal (and not an eight-fold increase as would occur for a poor implementa-

tion).

117

Example 2. We investigate one final test example for a highly-adaptive right-hand side for the

Dirichlet solver. For r2 = (x− cx)2 + (y − cy)2 + (z − cz)2, let

−∆u(x) =
(
3M2 − 6L− 4L2r2

)
exp (Lr2) sin(M(x+ 1)) sin(M(y + 1)) sin(M(z + 1))

− 4LM exp (Lr2)[cos(M(x+ 1)) sin(M(y + 1)) sin(M(z + 1))(x− cx)

+ cos(M(y + 1)) sin(M(x+ 1)) sin(M(z + 1))(y − cy)

+ cos(M(z + 1)) sin(M(x+ 1)) sin(M(y + 1))(z − cz)],

where L =
√

2, M = 5π, and cx = cy = cz = 3
4 The solution with boundary conditions of

u = 0 on our domain [−1, 1]3 is

u(x) = sin(M(1 + x)) sin((1 + y)) sin(M(1 + z)) exp (Lr2).

In figure 3.3 we take a look at a single slice of the force and solution in order to show how a

non-uniform refinement is achieved for the octree.

118

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

1.5

2

2.5

x 10
6

x
y

f

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−1000

−500

0

500

1000

1500

2000

2500

x
y

u

Figure 3.3: Plot of Dirichlet Boundary Conditions Example 2. Top: A single slice of the smooth

force distribution; Bottom: A single slice of the solution. For both, z = −0.25, and we note the

high-gradient nature near the corner of x = y = −1 results in a highly-adaptive refinement near

the boundary of the domain.

119

We look at the numerical results and timings in Table 3.8. As can be seen, we continue

to achieve a good rate, comparable to earlier results despite the introduction of many more in-

teractions and much larger LUB , LWB and LXB lists. Additionally, a significantly larger amount

of book-keeping is taking place as we must perform many more translations and rotations of

densities and polynomials to account for cross-boundary interactions.

εfmm εrhs M` Npts LT E2 E∞ TFMM Rate

Fourth-Order Force Approximation

10−2 10−2 7484 478976 7 6.3E − 02 7.7E − 02 3.40E − 01 1.41E + 06

10−4 10−4 46600 2982400 8 6.6E − 04 1.4E − 03 3.80E + 00 7.85E + 05

10−6 10−6 316296 20242944 9 6.5E − 06 1.7E − 05 6.44E + 01 3.14E + 05

10−8 10−8 2111110 135111040 9 1.0E − 07 2.6E − 07 9.90E + 02 1.36E + 05

Sixth-Order Force Approximation

10−2 10−2 1142 246672 6 5.2E − 02 7.4E − 02 1.18E − 01 2.09E + 06

10−4 10−4 4859 1049544 7 5.9E − 04 1.3E − 03 5.84E − 01 1.80E + 06

10−6 10−6 23122 4994352 8 5.3E − 06 1.5E − 05 5.73E + 00 8.72E + 05

10−8 10−8 100416 21689856 8 1.1E − 07 2.5E − 07 5.50E + 01 3.94E + 05

10−10 10−10 417586 90198576 9 2.3E − 08 5.2E − 08 5.42E + 02 1.66E + 05

Eighth-Order Force Approximation

10−2 10−2 337 172544 5 4.8E − 02 8.0E − 02 8.49E − 02 2.03E + 06

10−4 10−4 1100 563200 6 7.5E − 04 1.5E − 03 3.67E − 01 1.53E + 06

10−6 10−6 3438 1760256 6 6.3E − 06 1.7E − 05 1.45E + 00 1.21E + 06

10−8 10−8 10802 5530624 7 1.1E − 07 2.6E − 07 8.40E + 00 6.58E + 05

10−10 10−10 41833 21418496 8 2.2E − 08 5.3E − 08 6.59E + 01 3.25E + 05

10−12 10−12 133442 68322304 8 5.0E − 09 1.1E − 08 4.65E + 02 1.47E + 05

Table 3.8: Dirichlet Boundary Conditions second example numerical results.

120

3.1.6 Combining Smooth and Singular Sources

A number of applications require the modeling of source distributions that contain both a smooth

component and a singular component. In electrostatics, for example, positively charged ions

are often approximated as point charges and the neutralizing electrons as an inhomogeneous

continuous background. We consider such a case here. The relevant Poisson equation has the

form

∆u(x) = fsmooth(x) +

N∑
i=1

qiδ(x− xi),

where the qi are positive and the neutralizing background takes the form of a sum of Gaussian

distributions f ismooth(x) = 1√
2πσ2

e−(x−σ)2/2σ2
centered on each δ-function.

The smooth portion can be handled as above, while the particle sources can be handled with

the corresponding particle-based kernel-independent FMM (Ying et al., 2003). However, it is

trivial to modify our solver to incorporate the particle sources into the S2M operator 2.4.2 by

changing equation (2.32). That is, let

KB
S2MφB,u = FBS2Mγ

B +

N∑
i=1

qiG(x,xi), (3.2)

whereG is the kernel used for evaluating the singular component, consisting of the point charges.

Once the point charges are incorporated into φB,u, the rest of the components of the algorithm

(i.e., M2M, M2L, and L2L) take care of the far-field interactions. We need only calculate the in-

fluence of near-field particle interactions directly, and evaluate both the local expansions (L2T)

and the smooth contributions at particle locations. The latter is done by interpolation, as dis-

cussed in section 2.4.5.

Our primary concern here is to verify that incorporating particle charges into the volume

solver does not add extensive overhead since the accuracy of the kernel-independent particle

121

solver has been established (Ying et al., 2003) as has the volume solver above. Hence, we begin

by investigating the timings of the particle solver only below. We use a regular distribution of

Npts with varying accuracy εfmm. The results can be seen in table 3.9

εfmm S2M/M2M Near M2L L2L/L2T TFMM

Npts = 1.024E + 06, M` = 4096, LT = 5

10−2 2.51E − 02 6.00E − 01 2.74E − 02 4.24E − 03 6.57E − 01

10−4 6.85E − 02 5.99E − 01 1.41E − 01 2.33E − 02 8.32E − 01

10−6 1.39E − 01 6.05E − 01 4.04E − 01 6.63E − 02 1.21E + 00

10−8 2.50E − 01 6.00E − 01 1.09E + 00 1.58E − 01 2.10E + 00

Npts = 4.096E + 06, M` = 32768, LT = 6

10−2 1.06E − 01 1.29E + 00 2.49E − 01 1.90E − 02 1.66E + 00

10−4 2.92E − 01 1.29E + 00 1.37E + 00 9.97E − 02 3.05E + 00

10−6 6.15E − 01 1.29E + 00 3.51E + 00 2.92E − 01 5.71E + 00

10−8 1.14E + 00 1.29E + 00 9.42E + 00 6.48E − 01 1.25E + 01

Npts = 1.638E + 07, M` = 262144, LT = 7

10−2 1.55E + 00 4.04E + 01 2.22E + 00 2.71E − 01 4.44E + 01

10−4 4.23E + 00 4.06E + 01 1.13E + 01 1.49E + 00 5.76E + 01

10−6 8.73E + 00 4.06E + 01 3.15E + 01 4.18E + 00 8.50E + 01

10−8 1.51E + 01 4.07E + 01 8.24E + 01 1.01E + 01 1.48E + 02

Npts = 6.554E + 07, M` = 2097152, LT = 8

10−2 6.83E + 00 8.42E + 01 2.33E + 01 1.33E + 00 1.16E + 02

10−4 1.85E + 01 8.43E + 01 9.13E + 01 6.84E + 00 2.01E + 02

10−6 3.89E + 01 8.52E + 01 2.65E + 02 1.95E + 01 4.09E + 02

10−8 7.17E + 01 8.52E + 01 6.99E + 02 4.22E + 01 8.98E + 02

Table 3.9: Poisson equation with singular sources only.

122

We then look at the volume solver only and notice only evaluation the stages which change

significantly are the S2M and Near portions. For this example, we use the singular sources

for the building of the octree only; the resulting tree assumes a k3 grid given on each leaf,

from which we construct the polynomial approximation to the smooth force as in our previous

examples. Additionally, in these stages, the operators are calculated once each, so as expected,

as the size of the tree and accuracy increase, the times for the upward and near computations

decrease. We fix the polynomial approximation to a 6th order approximation (k = 6), and

note that since operators for the downward pass of the algorithm remain the same, these timings

remain consistent with the particle-only solver. We present the timings for the volume-only

solver in table 3.10.

123

εfmm S2M/M2M Near M2L L2L/L2T TFMM

Npts = 1.024E + 06, M` = 4096, LT = 5

10−2 2.94E − 03 3.72E − 02 2.74E − 02 4.70E − 03 7.22E − 02

10−4 7.56E − 03 3.77E − 02 1.61E − 01 2.86E − 02 2.34E − 01

10−6 1.94E − 02 3.71E − 02 3.84E − 01 6.18E − 02 5.03E − 01

10−8 4.86E − 02 3.73E − 02 1.13E + 00 1.53E − 01 1.37E + 00

Npts = 4.096E + 06, M` = 32768, LT = 6

10−2 2.23E − 02 3.10E − 01 2.60E − 01 1.85E − 02 6.11E − 01

10−4 5.61E − 02 3.11E − 01 1.34E + 00 1.01E − 01 1.81E + 00

10−6 1.46E − 01 3.08E − 01 3.48E + 00 2.92E − 01 4.23E + 00

10−8 3.65E − 01 3.12E − 01 9.76E + 00 6.51E − 01 1.11E + 01

Npts = 1.638E + 07, M` = 262144, LT = 7

10−2 1.72E − 01 2.53E + 00 2.13E + 00 2.80E − 01 5.12E + 00

10−4 4.68E − 01 2.53E + 00 1.14E + 01 1.40E + 00 1.58E + 01

10−6 1.21E + 00 2.53E + 00 2.94E + 01 4.24E + 00 3.73E + 01

10−8 2.85E + 00 2.54E + 00 8.25E + 01 1.00E + 01 9.79E + 01

Npts = 6.554E + 07, M` = 2097152, LT = 8

10−2 1.19E + 00 2.05E + 01 1.76E + 01 1.52E + 00 4.08E + 01

10−4 3.12E + 00 2.05E + 01 9.09E + 01 6.52E + 00 1.21E + 02

10−6 9.15E + 00 2.05E + 01 2.71E + 02 1.98E + 01 3.20E + 02

10−8 2.28E + 01 2.05E + 01 6.92E + 02 4.21E + 01 7.77E + 02

Table 3.10: Poisson equation with smooth sources only.

124

We now combine both the particle and volume solvers, and the performance of our scheme is

shown in Table 3.11. The real advantage of this approach is seen in how the timings for all but the

Near stages are nearly identical. Further, as noted, the S2M and L2T stages include minimal

extra computation and as the equivalent densities include all information for the singular and

smooth sources, no additional computation is required for the M2L, M2M , or L2L stages.

εfmm S2M/M2M Near M2L L2L/L2T TFMM

Npts = 1.024E + 06, M` = 4096, LT = 5

10−2 2.52E − 02 6.42E − 01 5.09E − 02 4.84E − 03 7.23E − 01

10−4 6.97E − 02 6.49E − 01 1.29E − 01 2.35E − 02 8.71E − 01

10−6 1.41E − 01 6.50E − 01 3.77E − 01 6.66E − 02 1.24E + 00

10−8 2.48E − 01 6.41E − 01 1.03E + 00 1.58E − 01 2.08E + 00

Npts = 4.096E + 06, M` = 32768, LT = 6

10−2 1.11E − 01 1.58E + 00 2.39E − 01 1.85E − 02 1.95E + 00

10−4 3.04E − 01 1.61E + 00 1.32E + 00 1.01E − 01 3.34E + 00

10−6 6.29E − 01 1.61E + 00 3.55E + 00 2.92E − 01 6.08E + 00

10−8 1.17E + 00 1.60E + 00 9.20E + 00 6.48E − 01 1.26E + 01

Npts = 1.638E + 07, M` = 262144, LT = 7

10−2 1.58E + 00 4.31E + 01 2.14E + 00 2.58E − 01 4.71E + 01

10−4 4.31E + 00 4.34E + 01 1.14E + 01 1.48E + 00 6.06E + 01

10−6 8.79E + 00 4.38E + 01 3.05E + 01 4.20E + 00 8.72E + 01

10−8 1.55E + 01 4.32E + 01 8.26E + 01 9.96E + 00 1.51E + 02

Npts = 6.554E + 07, M` = 2097152, LT = 8

10−2 7.00E + 00 1.04E + 02 1.80E + 01 1.40E + 00 1.31E + 02

10−4 1.93E + 01 1.05E + 02 9.14E + 01 6.76E + 00 2.23E + 02

10−6 4.01E + 01 1.07E + 02 2.61E + 02 1.93E + 01 4.27E + 02

10−8 7.34E + 01 1.06E + 02 7.00E + 02 4.19E + 01 9.21E + 02

Table 3.11: Poisson equation with a mixture of smooth and singular sources example numerical

results.

125

As noted, the upward pass timings are minimally larger than for the particle-only case, and

the downward pass timings are agnostic about the nature of the sources, dependent only on

the tree-structure itself. The Near computation timings are simply the sum of the particle and

volume-based cases, since there is no amortization of cost in this step.

3.2 Numerical Accuracy of Operator Components

In this section, we first verify numerically that the equivalent density representation yields the

expected accuracy, followed by a discussion of how the choice of grids affects the order of

convergence and an overall numerical justification for the use of Tikhonov regularization.

3.2.1 Equivalent Density Accuracy

As discussed in section 2.4.1, we invert several matrices of discretized Fredholm equations of

the first kind in order to build far-field representations; e.g.,

Kyd,xdφd = Kys,xdφs.

As in (Ying et al., 2004b), we choose to use Tikhonov regularization (Kress, 1999) when solving

these ill-conditioned systems. This solves two problems: in this way, we eliminate the null

space in the cases when it is present (Stokes kernel) and we significantly improve accuracy of

the inversion for higher numbers of samples (Section 3.2.3). We verify the potential we get from

φB,u, computed using our regularized method in the S2M operation, approximates well u(x),

computed directly from a force. We test using gB =
∑(a+b+c)≤(k−1)

a,b,c xaybzc for box B of width

2 and compute

u(x) =

∫
B
K(x,y)gB(y)dy, x ∈ xB,u,

126

to within 10−16 accuracy using adaptive Gaussian quadrature (Berntsen et al., 1991). We then

compute φB,u at yB,u using (2.33) where (KS2M)−1 is replaced with

(αI + (KS2M)∗KS2M)−1K∗S2M .

For FMM precision, np, we choose α = 10−(np+1). More details on the choice of α are

available in (Ying et al., 2004b). Our algorithm relies on the fact that for surfaces outside the

near field of B, φB,u is a sufficiently accurate representation of B’s volume force. We compute

u(x)equiv =

∫
yB,u

K(x,y)φB,u(y)dy

for x ∈ S, some surface. To evaluate the accuracy of this approximation, we compute

u(x)exact =

∫
B
K(x,y)gB(y)dy

up to an accuracy of 10−16 (Berntsen et al., 1991). In figure 3.4, we compare the infinity-norm

of the resulting error for three different kernels (Laplace, Modified Helmholtz, Stokes) and vary-

ing levels of the polynomial approximation and multiple degrees of FMM evaluation precision.

For each of the kernels of interest, φB,u, computed by inverting our ill-conditioned kernels, is

recovered on each surface S to within the requested degree of precision. For evaluating the ac-

curacy of the kernel inversion and regularization in the computation of φB,d, we note that this

computation is equivalent to the particle-based FMM, of which numerical analysis for the M2L

and L2L operators is available in (Ying et al., 2004b).

127

3 3.5 4 4.5 5 5.5 6
−10

−8

−6

−4

−2

0

Rs

lo
g 10

 |ε
ap

p|

Poly approx k = 4

εfmm=1e−2 εfmm=1e−4 εfmm=1e−6 εfmm=1e−8

3 3.5 4 4.5 5 5.5 6
−10

−8

−6

−4

−2

0

Rs

lo
g 10

 |ε
ap

p|

Laplace Kernel
Poly approx k = 6

3 3.5 4 4.5 5 5.5 6
−10

−8

−6

−4

−2

0

Rs

lo
g 10

 |ε
ap

p|

Poly approx k = 8

3 3.5 4 4.5 5 5.5 6
−12

−10

−8

−6

−4

−2

0

Rs

lo
g 10

 |ε
ap

p|

3 3.5 4 4.5 5 5.5 6
−12

−10

−8

−6

−4

−2

0

Rs

lo
g 10

 |ε
ap

p|
Modified Helmholtz Kernel

3 3.5 4 4.5 5 5.5 6
−12

−10

−8

−6

−4

−2

0

Rs

lo
g 10

 |ε
ap

p|

3 3.5 4 4.5 5 5.5 6
−10

−8

−6

−4

−2

0

Rs

lo
g 10

 |ε
ap

p|

3 3.5 4 4.5 5 5.5 6
−10

−8

−6

−4

−2

0

Rs

lo
g 10

 |ε
ap

p|

Stokes Kernel

3 3.5 4 4.5 5 5.5 6
−10

−8

−6

−4

−2

0

Rs

lo
g 10

 |ε
ap

p|

Figure 3.4: Error due to upward equivalent density approximation of the field. From left to right,

three columns show the errors for the polynomial force approximations of degree 4, 6 and 8.

Each plot shows four levels of FMM precision, εfmm = 10−np , p = n3
p − (np − 2)3 points

are used on the surfaces yB,u and xB,u. For the evaluation surfaces S, we vary the radius RS

from 3.1 to 5.9, the region covering LBI ∈ FB . The y-axis of each plot is the infinity norm

||uequiv − uexact||∞ computed over 488 samples on S.

128

3.2.2 Polynomial Basis and Grid Spacing

As discussed in section 2.4.4, we evaluate the solution at a leaf box B on a grid of points, xB,g

and construct an approximating polynomial from these points. Additionally, (section 2.4.6) we

construct a kth-order polynomial approximation to B’s distributed force if gB is given on a grid.

For consistency with AMR codes and efficiency of implementation, it would have been desirable

to use uniform grid samples. This approach works well for n ≤ 6, but it is well-known for large

n that equispaced grids lead to instabilities (Trefethen and Bau, 1997); as a result, for n > 6

we use Chebyshev grid points. To show that regularly-spaced grid points perform poorly for

n, k > 6, we consider the following test case:

−∆u(x) = e−L(||x||2)2 (
4L(||x||2)2 − 6L

)
, L = 250, x ∈ [−1, 1]3

This is a simplification of Example 1 in section 3.1.1 where our domain is [−1, 1]3 and ||x||2
is measured with respect to the origin. In figure 3.5, we compare the overall relative L2 error,E2,

for solutions using equispaced and Chebyshev grid points in the evaluation of the solution and

construction of the polynomial approximations of degree 4, 6 and 8. Errors for discretizations

using equispaced or Chebyshev grid points are similar for k ≤, but for k = 8, Chebyshev points

are more accurate.

129

2 3 4 5 6 7 8
−8

−7

−6

−5

−4

−3

−2

−1

0
Poly approx k = 4

−log10 |!fmm|

lo
g 10

 E
2

Regular Spacing
Chebyshev Spacing

2 3 4 5 6 7 8
−8

−7

−6

−5

−4

−3

−2

−1

0
Poly approx k = 6

−log10 |!fmm|

lo
g 10

 E
2

2 4 6 8 10
−10

−8

−6

−4

−2

0
Poly approx k = 8

−log10 |!fmm|

lo
g 10

 E
2

Figure 3.5: For each of the test examples, the x-axis indicates the negative log of the requested

FMM accuracy, εfmm, and the y-axis indicates the log of E2. The number of points chosen

for each εfmm is similar to those in Example 1 of section 3.1.1 for εrhs = εfmm. Left: for

polynomial approximation of degree 4 and xB,g of size 43 on each leaf B, overall relative error

is close for equispaced and Chebyshev points. Middle: For n, k = 6 differences are visible but

insignificant. Right: For n, k = 8, solutions based on equispaced grid are less accurate.

130

3.2.3 Tikhonov Regularization

As discussed above in section 3.2.1, we use Tikhonov regularization (Kress, 1999) to invert

Fredholm equations of the first kind, specifically the S2M, M2M, and L2L operators in section

2.4. Further, in section 3.2.1, we looked specifically at the accuracy resulting from this inversion

process. To justify the overall use of Tikhonov regularization, we consider the following test

cases for the Poisson and Stokes equations, respectively for x ∈ [−1, 1]3.

−∆u(x) = e−L(||x||2)2 (
4L(||x||2)2 − 6L

)
, L = 250

−∆u(x) +∇p(x) =
(

8L3 ||x− xi||2 − 20L2
)
e−L||x−xi||

2

[∇× (x− xi)] , L = 125

In figure 3.6, we compare the overall relativeL2 error,E2, solutions, resulting from Tikhonov

regularization versus no regularization and the construction of polynomial approximations of de-

gree k = 6 for the right-hand sides (errors for k = 4, 8 are similar). For decreasing levels of

εfmm, we choose εfmm = εrhs.

We notice that for εfmm > 10−7, the effect of not employing regularization is equivalent to

using regularization for both the Laplace and Stokes operators. However, as εfmm decreases, the

number of sample points on the equivalent and check surfaces increases, resulting in larger linear

systems, which as mentioned earlier, may be poorly conditioned. Indeed, for such larger systems

resulting from εfmm ≤ 10−7, it is necessary to regularize the systems to achieve desirable

results.

131

2 4 6 8 10
−9

−8

−7

−6

−5

−4

−3

−2

−1
Laplace Kernel, k=6

−log
10

|ε
fmm

|

lo
g 10

 E
2

No Regularization
Tik. Regularization

2 4 6 8 10
−9

−8

−7

−6

−5

−4

−3

−2

−1
Stokes Kernel, k=6

−log
10

|ε
fmm

|

lo
g 10

 E
2

No Regularization
Tik. Regularization

Figure 3.6: For each of the test examples, the x-axis indicates the negative log of the requested

FMM accuracy, εfmm, and the y-axis indicates the log of E2. The number of points chosen

for each εfmm is similar to those in Examples 1 of section 3.1.1 and section 3.1.3 for εrhs =

εfmm. Left: for polynomial approximation of degree 6 for the Laplace kernel with and without

regularization. Right: for polynomial approximation of degree 6 for the Stokes kernel with and

without regularization.

132

3.3 Shared-Memory Parallelization and Load-Balancing Effects

We close with a discussion of how we accelerate the major computation loops of our algo-

rithm using OpenMP shared-memory parallelization and load-balancing techniques. As indi-

cated in section 5.1, we have designed the code to take advantage of shared-memory architec-

tures through the use of OpenMP. In particular, we highlight the steps to accelerate the various

major steps in Algorithm 1. For details on the nature of OpenMP and its usage, we refer the

reader to (Chapman et al., 2007).

S2M and M2M Computations In the upward pass (step 2 of Algorithm 1 and section 2.4.2),

we begin by building a list of all leaf boxes, B in the octree T , which have sources. We then

do a simple OpenMP parallelization step over these boxes for the S2M step. As all components

of equation (2.33) are of the same size for each leaf box, there is no need to rebalance the load

among threads

In order to ensure proper order of computation, we proceed by sorting all non-leaves in

reverse-order by depth. For each non-leaf level in T , beginning at the deepest level, we translate

a box B’s children’s upward equivalent densities to its own through the M2M computation in

(2.35). Again, as each of the components is of the same size, there is no need to rebalance among

threads. As we parallelize only among boxes at the same depth in T , level ` is not processed

until `+ 1 has completed. Further, once we have reached coarse level ` = 1 (which only occurs

for periodic or Dirichlet boundary conditions), we discontinue the parallelization.

M2L, L2L, and L2T Computations In the downward pass of Algorithm 1 (section 2.4.3),

we perform a similar operation as above for the M2M step. First, we sort all boxes B in T

from the shallowest to deepest levels in the tree. For each level, `, we parallelize among the

boxes being processed at that level for the M2L and L2L computations. The L2L components

133

in equation (2.39) are of equivalent size for each box B; however, for each box B, the size of

LBV varies greatly (for example, this list is much smaller for boxes on the edge or corners of our

domain). In order to ensure proper balancing among threads, we further sort all boxes for each

level, ` by the size of LBV and then reorder the boxes such that the sum of all LBV for each thread

is of roughly the same size.

For the L2T computations in equation (2.41), we once again build a list of only leaf boxes,

for which the target solution is desired, and we parallelize the computations in this list. The

components of the discretized equation are all the same size, as with the S2M computation, so

there is no need to rebalance among threads for this step.

Near-Field Computations We focus our discussion here on the U -list computations. Paral-

lelizing the near-field computations in equation (2.44) is the most straightforward in that no leaf

box B is dependent on the completion of computations by any other box. That is, we can simply

parallelize the computations among leaf boxes, for which the LBU exists. However, even more

so than with the M2L computations, the sizes of LBU can be very different among leaf boxes

(especially in the most adaptively-refined octrees). Thus, we sort all leaf boxes B in T by the

size of LBU and reorder the list of leaves such that the sum of the size of LBU among each thread

is roughly equivalent, ensuring a relatively well-balanced load among threads. The size of the

components and operators are the same for each box B, so balancing by list sizes is optimal. We

note that this rebalancing is largely unnecessary for uniformly-refined trees.

Additionally, for matrix kernels (e.g. Stokes) and larger orders of polynomial approximation,

constantly loading large matrices into memory results in little speedup as we increase the number

of processes. In order to correct this, for each equivalence class as described in section 2.5, we

perform all of the operations involving a single class first before performing all computations for

other classes of operators. Hence, we only load each matrix operator at most once per processor.

134

We note that for the M2L step, as we have to process level ` before moving to level ` − 1,

operators will constantly have to be reloaded. Performing all computations in order for each

equivalence class at each level is done, but we have seen little time savings for this in practice as

opposed to the near-field computations, where it is essential for good speedup.

Remark 3.1. As with the near-field computations, for adaptively-refined trees, we rebalance the

loads among threads for the X and W lists, which involve additional near-field S2T , M2T and

S2L computations in equations (2.50) and (2.49), based on the sizes of LBX and LBW , respec-

tively. Additionally, we perform all computations in order of equivalence class, again loading

each matrix operator at most once.

Timing Results Versus Number of Processors In order to see the effect of our use of OpenMP

and load-balancing strategies, we investigate the strong scaling of two fixed problems. First,

from Example 1 in section 3.1.1, we set the polynomial order, εrhs, and εfmm to 8. The rea-

soning behind this is to ensure that for a single processor, neither the near-field nor far-field

computations fully dominate the timings. In table 3.12 we look at the timings for the different

algorithmic steps (note that the near-field computation times include U ,W ,and X list computa-

tion times) as well as plot the decreasing times in figure 3.7.

For our second study of the effect of shared-memory parallelization, we look at the Stokes

kernel tests from section 3.1.3. We fix the polynomial order to 8 and look at εrhs = εfmm = 6,

again in an effort to not have one step fully dominate the computational time, allowing us to look

at the effect of scaling the number of processors. Timing results can be seen in table 3.13 and

figure 3.7.

135

Nprocs S2M/M2M Near M2L L2L/L2T TFMM Rate

1 1.126E + 00 8.534E + 00 1.464E + 01 9.340E − 01 2.524E + 01

2 5.880E − 01 5.112E + 00 7.285E + 00 4.779E − 01 1.346E + 01 1.874E + 00

4 3.750E − 01 2.377E + 00 4.559E + 00 2.928E − 01 7.604E + 00 1.770E + 00

8 1.839E − 01 1.232E + 00 2.280E + 00 1.460E − 01 3.842E + 00 1.979E + 00

16 9.701E − 02 6.894E − 01 1.241E + 00 8.547E − 02 2.113E + 00 1.818E + 00

Table 3.12: Timings (all in wall-time seconds) for the various components of the FMM volume

solver for a fixed problem size for the Poisson equations. The polynomial-order, εrhs, and εfmm

are set to 8. The number of leaves, M` = 5440, the tree level, LT = 7, and Npts = 2785280

as seen in Example 1. Nprocs indicates the number of processors, which we scale linearly.

We separate the S2M/M2M , Near (U ,W ,X-list computations), M2L (V -list computations),

L2L/L2T timings with the total shown as TFMM . The scaling Rate is shown last.

136

Nprocs S2M/M2M Near M2L L2L/L2T TFMM Rate

1 8.795E + 00 5.417E + 01 9.402E + 01 6.833E + 00 1.638E + 02

2 5.182E + 00 2.857E + 01 5.214E + 01 3.618E + 00 8.951E + 01 1.830E + 00

4 2.8670E + 00 1.308E + 01 3.030E + 01 1.734E + 00 4.798E + 01 1.866E + 00

8 1.570E + 00 6.781E + 00 1.614E + 01 8.367E − 01 2.532E + 01 1.894E + 00

16 8.248E − 01 3.612E + 00 9.452E + 00 3.918E − 01 1.429E + 01 1.773E + 00

Table 3.13: Timings for the various components of the FMM volume solver for a fixed problem

size for the Stokes equations. The polynomial-order, εrhs, and εfmm are set to 6. The number of

leaves, M` = 4894, the tree level, LT = 7, and Npts = 2505728 as seen in Example 5. Nprocs

indicates the number of processors, which we scale linearly. We separate the S2M/M2M ,

Near (U ,W ,X-list computations), M2L (V -list computations), L2L/L2T timings with the

total shown as TFMM . The scaling Rate is shown last.

137

✲�

✲✁

✵

✁

�

✻

✵ ✵✂✄ ✶ ✶✂✄ ✁ ✁✂✄ ✸ ✸✂✄ �

▲
☎
✆

☎
✝

✞
✟
✠
✡
☛
☞
✌

✍✎✏ ✎✑ ✒✓✔✕✖✗ ✎✑ ✘✗✎✙✖✚✚✎✗✚

✘✎P✚✚✎✛ ✜✢✓✣✤P✎✛

Total
M2L
Near

S2M/M2M
L2L/L2T

✲�

✵

�

✹

✻

✽

✵ ✵✁✂ ✶ ✶✁✂ � �✁✂ ✸ ✸✁✂ ✹

▲
✄
☎

✄
✆

✝
✞
✟
✠
✡
☛
☞

✌✍✎ ✍✏ ✑✒✓✔✕✖ ✍✏ ✗✖✍✘✕✙✙✍✖✙

❙✚✍✛✕✙ ✜✢✒✣✚✤✍✥✙

Total
M2L
Near

S2M/M2M
L2L/L2T

Figure 3.7: Top: Log-log plot for timings from table 3.12, Bottom: Log-log plot for timings from

table 3.13. In both examples, total FMM computation time, TFMM exhibits good, nearly-linear

scaling with shared-memory parallelization.

138

As can be seen in tables 3.12 and 3.13, our scheme exhibits the desirable result of nearly-

linear speedup as we scale the number of processors. As indicated in the conclusion, current

work is being done to incorporate this work with (Lashuk et al., 2009) in order to achieve paral-

lelization on a significantly larger scale.

139

4
COMPLEX GEOMETRY SOLVER

As discussed in the Introduction, our goal is to solve PDEs of the form in equation (1) in complex

geometries (e.g., figure 1). For this purpose, we review the Embedded Boundary Integral (EBI)

approach (Ying et al., 2004a), discussing pre-existing components and new components which

allow for complex force distributions.

4.1 Embedded Boundary Integral Method

For an inhomogeneous interior Dirichlet PDE of the form

L(u)(x) = f(x) in ω, u = g on ∂ω, (4.1)

where ω is some complex geometry with boundary ∂ω and g is in the Dirichlet boundary condi-

tion on ∂ω, the EBI solver performs the following steps:

1. Embed ω in a regular domain, Ω with domain ∂Ω and solve:

L(u1)(x) = f(x) in Ω, (4.2)

where the force f is given at possibly irregular locations, depending on the input.

2. Solve a boundary integral problem on ∂ω where the border data, g is modified using the

solution of u1 derived from step 1.

L(u2)(x) = 0, u2 = g − u1 on ∂ω (4.3)

3. Add u1 and u2 to obtain the full solution.

In previous work, the prism, in which ω is embedded was discretized regularly such that

hx = hy = hz (Mayo, 1984; Mayo, 1985; Mayo and Greenbaum, 1992; McKenney et al., 1995).

140

As suggested in (Mayo, 1984), ∂Ω is chosen to be far removed from ∂ω. For our approach, u2

will not have to be evaluated on ∂Ω, so it need not have a regular discretization; ∂Ω is chosen

to be a bounding box of arbitrary size as long as it encloses all of ω. As a graphic example,

figure 4.1 takes the shape in figure 1 and embeds it inside of a rectangular prism, which has been

regularly discretized (again, this is not necessary).

y

z

x

Γ

Ω

Figure 4.1: The original domain is embedded in a uniformly-discretized domain.

We first seek to solve equation 4.2 on the new regular domain with simple boundary con-

ditions (e.g., u|∂Ω = 0 or free-space). There are many possible options for fast solutions to

this problem including Fast Fourier methods, cyclic reduction methods, multigrid methods, and

FMM.

(Ying, 2004) uses FFT methods, assuming that the body force is available everywhere. The

same is true for (McKenney et al., 1995; Mayo, 1985). This incorporates the homogeneous

boundary conditions; however, one could also use volume integrals methods. That is, one can

141

instead solve for u1 everywhere using the FMM-based volume integral method from Chapter 2

in free-space by setting radiation boundary conditions of u1 → 0 as x → ∞. Further, one can

then easily solve for u1 on ∂ω by interpolating free-space grid values on leaves to the boundary

points, using the octree to locate which leaves contain boundary points. Given that we have a

solver perfectly designed for this task for free-space elliptic PDEs, we assume the force is known

everywhere in Ω and briefly describe the pre-existing algorithm we use for solving the boundary

integral. We then turn to how we perform an extension of the volume force for cases when we

only have sources inside of our domain.

4.1.1 Solving the Boundary Integral

Having solved for u1 on Ω, it is necessary to solve the Laplace equation in step 3 for u2 in

Ω. Require u2 = g − u1 on ∂ω; hence, there will be discontinuities across ∂ω. The density

function on ∂ω is needed in order to correct for these discontinuities, using theory established in

section A.3.

For a Dirichlet Laplace problem inside some domain in R3, it is possible to solve for the

potential u due to some density φ on a boundary ∂ω. As the boundary surface is inR3, consider

it as parameterized by the parameters s and t. Consider that the density, φ, is defined by φ(s, t)

as opposed to the point y. Further, any point y on ∂ω is given by (x(s, t), y(s, t), z(s, t)) for

some s, t. The density function is described by the following Fredholm equation of the second

kind:

φ(s, t) +
1

2π

∫
∂ω

φ(s, t)
∂

∂n

1

r
d∂ω = 2g̃(s, t) (4.4)

In equation 4.4, g̃ represents the new modified boundary condition, g̃ = g − u1|∂ω, where

u1 is interpolated from the grid points Ω. Various interpolation strategies are possible. For

142

example, (Ying et al., 2004a) use Lagrange interpolation, and (Mayo, 1985) suggests cubic or

quintic spline interpolation. Let equation 4.4 be written as

(φ+Gφ)(x) = g̃ (4.5)

For evaluating the integral equation, (Ying et al., 2006) let the boundary Γ be the union

of overlapping patches, Pj , j = 1, ...,m parameterized over an open set Uj ⊂ R2 by smooth

functions, gj : Uj → R3, gj(Uj) = Pj . They use a partition of unity, wj : Γ→ Rwherewj ≥ 0

is smooth and supported in Pj and ∀x ∈ Γ,
∑m

j=1wj(x) = 1. They let Jj be the Jacobian of gj

and define ψj(cj) = wj(gj(cj))φ(gj(cj))Jj(cj), and the integral equation, (Gφ)(x) is restricted

to the domain of each Uj such that the integral equation operator can be represented as

(Gφ)(x) =
m∑
j=1

∫
Uj

G(x, gj(cj))wj(gj(cj))φ(gj(cj))Jj(cj)dcj

=
m∑
j=1

∫
Uj

G(x, gj(cj))ψj(cj)dcj

Note that ψj vanishes on ∂Uj . Then, regularly spaced gridpoints are chosen on Uj as the set

{cj,i} and the set C = ∪mj=1{cj,i} is the set of grid points used for approximating the integral

equation. That is, these are used as the Nyström points in the quadrature method. The equation

is broken into three parts, for non-singular evaluation and singular evaluation, such that they

compute integrals of the form

∫
U

G(x, g(c))ψ(c)dc. (4.6)

If x is not in g(U), then equation 4.6 is non-singular and can be evaluated using the trape-

zoidal rule and FMM (Ying et al., 2006). Otherwise, if x = g(ĉ), ĉ ∈ U , introduce the function,

143

ηĉ(c) = χ

(
|c− ĉ|√

h

)
The function χ : [0,∞)→ [0, 1] is chosen to be infinitely differentiable and non-increasing

such that χ(r) = 1 near r = 0 and χ(r) = 0 when r ≥ 1. Further details are available in (Ying,

2004). Then, equation 4.6 is broken into singular and non-singular parts,

∫
U

G(g(ĉ), g(c))ψ(c)dc =

∫
U

G(g(ĉ), g(c))(1− ηĉ(c))ψ(c)dc+

∫
U

G(g(ĉ), g(c))ηĉ(c)ψ(c)dc.

The first part is non-singular and can again be evaluated with the trapezoidal rule and FMM.

For the second part, a change to polar coordinates is utilized to obtain a smooth solution, where

FFT-acceleration is used to interpolate the quadrature points from the Cartesian grid to the polar

grid (Ying, 2004).

4.1.2 Solving the Laplace Equation

We have now described how to compute u1 and φ on ∂ω, and we wish to solve the Laplace

equation ∆u2 = 0 in Ω where u2 = g−u1 on ∂ω. One method involves computing jump condi-

tions as in (McKenney et al., 1995; Ying et al., 2004a); an additional approach is to evaluate u2

near the boundary using nearly singular integration; (Ying et al., 2006) provide a technique for

nearly singular integration near a smooth boundary in 3D. They suggest using the integral equa-

tion based on the fundamental solution to the Laplace equation. Away from the boundary, the

evaluation is fine and non-singular; however, near the boundary the kernel, G(x,y) will become

singular. This newer approach breaks the domain Ω into three disjoint partitions, Ω0, Ω1 and Ω2.

Points in Ω0 are considered well-separated from the boundary, points in Ω1 are intermediately

near and points in Ω2 are near the boundary. For surface discretization spacing hs < 1, they

define well-separated as being greater than
√
hs away from the boundary, intermediately-near as

144

being from hs to
√
hs away, and near as being within hs distance of the boundary. Well-separated

points in Ω0 are evaluated using direct quadrature as above, where weights are determined using

the trapezoidal rule. For intermediate points in Ω1, they resample on a finer grid using FFTs,

and then compute the quadrature. For points x in Ω2, they locate a point on x0 on the boundary

such that for α < 1 but ≈ 1; the following property thus holds that

x0 − x

||x0 − x||
· n(x0) ≥ α.

Then, a set of points {xj}, j = 1, ..., L for some L are located such that

xj = x0 + j
x0 − x

||x0 − x||
· n(x0)βh.

The constant β is chosen so that αβ < 1 but ≈ 1. Using the jump conditions and singular

integral evaluations, the potential at x0 can be obtained (Ying, 2004). For points xj in Ω0, normal

quadrature is performed, and for points in Ω1, the above method is used. With the potential at

these points known, interpolation is used to obtain the values at x.

The boundary is considered to be built as in the last section 4.1.1, with Nyström points

chosen as before. Figure 4.2, reproduced from (Ying et al., 2006), provides an illustration of

their method. In general, this method provides a way of using the kernel-independent FMM to

accelerate the solution procedure for the Laplace equation.

4.1.3 Putting It Together

Assuming a solution for u1 is computed using the free-space FMM-based volume integral solver,

and u2 with appropriate jump corrections is solved as discussed above, we can now add the two

solutions together such that u = u1 + u2 is the solution for requested interior Dirichlet PDE in

equation (4.1).

145

Ω0

Ω2

Ω1

Γ

xL

x1

x0

x

Ω1

Ω2

Figure 4.2: Reproduced from (Ying et al., 2006), this figure shows how to perform the nearly

singular integration and further details the notation

4.2 Extending the Body Forces When Boundaries are Present

While we have described a modification for taking into account non-uniformly distributed body

forces for the EBI solver, this still assumes that the force is supported everywhere in free space

while user input may only provide forces for the interior of the desired domain of computation.

As we want to approximate the forces in a leaf node at kth-order accuracy, for example, leaf

nodes which intersect the boundary may have too few points for the desired accuracy; hence,

forces will have to be extended or extrapolated through the boundary. There are different ap-

proaches that could be employed, including extrapolation techniques in Ghost Fluid Methods

(Fedkiw et al., 1999; Aslam, 2003), seen in level set approaches (Osher and Fedkiw, 2002).

However, we can follow the method of (Ethridge, 2000) as we already have the tree restrictions

as required. We outline the approach for 2D below.

4.2.1 Previous 2D Approach

Assuming f(x) is given only in the interior of some complex domain, additional considerations

need to be made in order to utilize the FMM-based free-space volume solver. In particular, there

146

are four problems: (1): the boundary of the domain for computation must be defined, (2): volume

grid points which are inside the domain need to be located, (3): irregularly shaped regions in leaf

nodes need to be defined, and (4): forces must be approximated within each irregular subdomain.

There are several ways of shaping the domain, and defining the boundary curve. In (Ethridge,

2000), each curve is approximated by a piecewise cubic polynomial. Further, there are several

approaches for determining which leaf nodes curves intersect, and (Ethridge, 2000) uses a New-

tonian iteration procedure. Leaf nodes are then divided into three categories: irregular nodes

which contain a piece of the boundary, semiregular nodes which are neighbors of irregular nodes,

and regular nodes which are neither irregular nor semiregular. Figure 4.3 shows an example of

this classification in 2D.

Each regular and semiregular box contains the k× k (i.e., 4× 4) grid of points, but irregular

boxes may not. For the volume integral, it is necessary to determine which points are inside of

the computational domain. For a bounded domain, Ω with boundary ∂Ω, the following result

holds from (Kress, 1999):

u(z) =
1

2πi

∫
∂Ω

dw

w − z
=

1 if w ∈ Ω

1
2 if w ∈ ∂Ω

0 if p ∈ R2\Ω̄

Using FMM, u(z) can be quickly and accurately evaluated to determine irregular grid points

in the interior. For unbounded problems, a similar result holds (Kress, 1999; Ethridge, 2000).

Another problem is that each irregular leaf box may contain several intersecting curves,

which are located in (Ethridge, 2000) by “walking” along each curve and tracing out interior

subregions in irregular leaf nodes. Locating interior subregion points is then performed via a

similar method as above.

Once boundaries of irregular regions have been determined and gridpoints have been located,

147

*

*

*

+

+

+

+

+ +

+

+++

+

+

+

+

+

+

+

* *

*

+

+

+
+

*

*

+

* *

*

* *

+

*

+

* ++

*

* *

*+

*

*

*

*

*

*

++

Figure 4.3: Classification of leaf nodes. Nodes marked by an asterisk, ∗ are irregular, those

marked with a plus, + are semiregular, and the rest are regular.

148

there is the issue of approximating the polynomial there as described in the last section. In order

to maintain a high-level of accuracy, the force needs to be known at a sufficient number of points;

however, situations such as figure 4.4 may exist, where too few points are available.

Figure 4.4: An irregular box where only a few source points are known. In order to approximate

the force at this node, extrapolation or other techniques are necessary.

If there are enough points, it may be possible to maintain a high-order approximation, but

in order to maintain the benefits of the precomputable tables, (Ethridge, 2000) takes a different

approach. The irregular region is embedded in a box of the same size of that level of the tree such

that k2 source points are available (16 for k = 4) if possible; that is, the portion of the boundary

is embedded along with as much of the interior of the domain of computation as possible. The

situation is broken into three possibilities, where the irregular domain contains 0, 1, 2, or 3

corners of the bounding box at that level. For example, in figure 4.4, the region contains the

bottom-right and top-left corners, so 2 corners are bounded. Bounding boxes are built such that

they include all of the original corners. This makes interpolation strategies easier (Ethridge,

149

2000). An example for figure 4.4 is seen in figure 4.5.

Figure 4.5: Irregular regions are bounded by boxes of the same scale as boxes at that level in the

hierarchy, such that all corners of the irregular leaf box are included, and as much of the interior

domain is included as well. The bounding box is the dashed box.

Points that are available for interpolation are decided to be those which are within the bound-

ing box, or are in boxes which the bounding box intersects where the points are still inside the

interior of the domain, or are in boxes which share a boundary with the bounding box. For the

example above, the points available for interpolation are seen in figure 4.6, which expands figure

4.5 and rotates it.

With the locations of all available source points, (Ethridge, 2000) first tries extrapolating

forces across the boundary. As the sources are on a grid, 1D extrapolation may be possible

for collinear points. This process is repeated until as many possible extrapolation points are

generated, and then the precomputed interpolation is used. Otherwise, if not enough points can

be generated, a variety of least squares techniques are employed. If this does not work, the

150

Figure 4.6: The leaf node which includes the irregular region (solid black lines) only has a

few available internal points. The points that are available for interpolation and extrapolation

purposes are located by seeing which leaf nodes touch the bounding box (dashed lines) of the

irregular region.

151

order of least squares fitting is reduced until some order of accuracy is obtained, and the user is

notified.

4.2.2 Current 3D Approach

We re-emphasize that the key point for the volume solver in this context is that we require an

accurate polynomial representation at every leaf box B of fB , B’s support of the force f . As

before, we refer to this polynomial as γB .

To motivate the construction of γB , we begin with an example in which fB is given on grid

of size k × k × k (hereafter referred to as a k3 grid). A kth order approximation, γB could then

be constructed as

fB(x) ≈
Nk∑
j=1

γBj βj(x− cB), (4.7)

where Nk = k(k + 1)(k + 2)/6, and βj is the jth basis polynomial in our representation (for

k = 3, 4, 5, 6, we use monomials and require k3 equispaced points in practice. As discussed

earlier, this system is overdetermined (Trefethen and Bau, 1997), so we can solve (4.7) for γB

using the SVD.

In general, the above approach does not work for obvious reasons. Since forces may not al-

ways be represented on a grid, we may not have enough points to accurately and stably compute

γB , especially since we will require our tree to be balanced; that is, assuming T has been sub-

divided to have at most s points per leaf box B, subsequent balancing for tree-level restriction

may result in some leaves with very few or no points. To compensate for such leaves, we utilize

the data structures available to us through the various lists to build γB at sufficiently high order.

Further, even for forces on a grid, we may have a situation in which a leaf node, B, intersects

the curve and only a fraction of its grid points are contained within the computational domain.

152

For example, consider figure 4.7, where several leaf nodes lack enough grid points to accurately

compute the polynomial approximation to the degree requested.

Figure 4.7: A subset of a 2D tree T in which four leaf boxes are shown with an overlapping

domain. Points within the domain are represented, and as can be seen, several boxes do not have

full grid representations. Here, k = 4.

It can be seen that by evaluating γB at a limited grid of size k̃3 < k3, one of two situations is

possible. First, the number of the points used in evaluating γB may be too small in order to build

a sufficiently smooth kth order polynomial approximation, and forcing it to do so would result

in an inaccurate representation of fB or worse, a discontinuity could result in large oscillations

of the force here (Demmel, 1997; Trefethen and Bau, 1997). One option is to decrease the

order of the polynomial approximation at such leaf boxes, but this affects the overall requested

accuracy of the solver by making it low accuracy at specific locations. In order to see the effects

of local low-order approximation, we return to equations (2.4)- (2.6). Again, let f̂(x) be the

kth-order polynomial approximation to f(x) such that |f̂(x) − f(x)| ≤ δ = O(hk), and let

û(x) = Q̂[f](x) denote the quadrature approximation of
∫

ΩK(x,y)f(y)dy. Assuming the

153

near field is computed exactly, the quadrature error satisfies an estimate of the form∣∣∣∣Q̂[f](x)−
∫

Ω
K(x,y)f(y)dy

∣∣∣∣ ≤ ε‖f‖1,
where ε is the approximation error in the FMM, controlled by the parameter p, the number

of discretization points used for building the equivalent densities, as described in (Ying et al.,

2004b; Langston et al., 2011) and ‖f‖1 =
∑

i |fi| as before for sampled fi. Then, if ε is chosen

to be on the same order as δ, we have a kth-order scheme in terms of accuracy. However, if we

know that δ = O(hk̃) locally in some area Ω̃ ⊂ Ω, we can make no guarantee on the global

accuracy of the scheme. It is therefore important to build smooth extensions to the force f on

leaf boxes which overlap our boundary.

4.2.3 Generating List of Boxes for Which Extension Necessary

Before discussing how we perform our extension, we begin by describing for which boxes ex-

tension will be necessary. This further requires the discussion of how we build our adaptively-

refined trees.

Assuming we are given our right-hand side function f(x) as an input routine, defined on

each leaf box B as fBk (x), sampled at all k3 discrete equispaced points which are in the interior

of our domain, we compute a kth-order polynomial approximation, γB using the same strategy

as outlined in (Langston et al., 2011). If B is fully enclosed within our domain, we compute

the approximation from the full grid of points; for boxes overlapping the boundary, we use the

subset of k3 points inside of our domain. As in (Ethridge and Greengard, 2001), we evaluate

γB on a refined (2k)3 grid (or subset of such points that are in the interior of boxes overlapping

the domain), denoting this approximated evaluation of f as fB2k(x), and compute the error ap-

proximation
∣∣∣∣∣∣fB2k(x)− f̃B2k(x)

∣∣∣∣∣∣
2
. For a pre-specified tolerance, εrhs, B and its descendants are

recursively subdivided as long as the error in the force approximation on any leaf box is greater

154

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 4.8: Top left: We begin with a subdivided domain which is not balanced; Top middle: In

this example, investigating an interior problem, we are not concerned with exterior boxes yet.

We identify all primary violators of the tree-level restriction (in red); Top Right: All violators are

subdivided and their descendants (in green) are identified; Bottom left: All descendants that are in

violation of tree-level restriction are identified (in red); Bottom middle: All violators subdivided

and descendants identified (in green); Bottom right All tree-level violations inside of the domain

have been taken care of.

than εrhs. As in (Langston et al., 2011), we must further balance the resulting octree, T such

that all adjacent leaf boxes are within one level of each other in the tree. For an example of our

subdivision process, we refer to figure 4.8, which begins by showing a domain in the top-left

which has been subdivided until our force approximation tolerance is satisfied but the tree-level

restriction is violated. The remaining figures step through the algorithm to subdivide the tree

until all the tree-level restriction is satisfied.

155

We note in figure 4.8 that in the tree-balancing process, we only balance among boxes that are

in the interior of our domain or overlap the boundary; this is due to the fact that we only balance

among boxes which contain target points in the computation of the free-space computation.

Further, for boxes far from the boundary, no extension will be performed, and the polynomial

approximation will be zero there, so these boxes do not contribute as sources.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−1.12 −1.1 −1.08 −1.06 −1.04 −1.02 −1 −0.98 −0.96

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 4.9: We identify all leaf boxes for which extension will need to be performed. Left: All

leaf boxes which overlap the boundary are tagged (in blue); Middle: The boundary may pass

very close to an exterior box, so we must extend the force here as well; Right: All leaf boxes

which are in the exterior of the boundary and are direct neighbors with a leaf box which overlaps

the boundary are identified (in purple).

We now turn to locating all boxes for which the extension will be performed. In figure 4.9(left),

any leaf box overlapping the boundary is marked in blue. For such boxes, if any of the k3 grid

points lay outside of the domain, extension will be performed. However, for some leaf boxes,

the curve passes near the corner or edge as in figure 4.9(middle). In such cases, the force approx-

imation will experience a sharp-dropoff as a result of not including the exterior box (in purple)

as a source box, so we additionally extend the force to exterior boxes.

In figure 4.9(right), we identify all boxes in the exterior of our domain which are adjacent to

a box overlapping the boundary. However, for a box B, which overlaps the boundary, exterior

156

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 4.10: Top left: All leaf boxes in the exterior, for which extension will be performed but are

in violation of our strict 1:1 level restriction are identified (in red) while all exterior leaf boxes not

in violation are left as is (in purple); Top middle: All violators are subdivided and descendants

are identified; Top right: All descendants leaf boxes in the exterior which directly touch a leaf

box overlapping the boundary and are at a level more shallow are identified as in violation (in

red); Bottom left: Violators are subdivided and descendants tagged (in green); Bottom right: All

boxes, for which extension will be performed are identified: blue boxes overlap the boundary

while purple boxes have an boundary-overlapping leaf box as a neighbor, now at the same depth

in the tree.

boxes, which are adjacent, may be at shallower levels in the tree. Extending to such boxes

may result in a non-smooth extension, so we subdivide all exterior boxes which are adjacent

to the boundary, and all resulting boxes which are adjacent to an overlapping box are chosen

for extension. In figure 4.10, we show the process of subdividing all such exterior boxes and

157

highlighting which resulting boxes are chosen for extension.

By extending by one box outwards, we confront the following issue: as we refine the volume

further, we are extending the force by a smaller distance r from the boundary, creating a sharper

drop-off. In order to observe the issue, let BH be a box of width H such that for some target

point q

PH(q) =

∫
BH

dy

||y − q||
.

Then we have

∫
B1

H3dy∣∣∣∣H (y − q
H

)∣∣∣∣ = H2P1

(q

H

)
.

By the chain rule,

d

dq
PH(q) = H2

(
1

H

)
d

dq
P1

(q

H

)
.

Hence,

(
d

dq

)n
PH(q) = H(2−n)

((
d

dq

)n
P1

(q

H

))
For a box near the edge of the boundary at a distance of r from the closest surface discretiza-

tion point, one can expect the following rate of decay for n > 2:

(
d

dq

)n
P1 ∼

(
1

r

)n−2

.

Hence, we obtain

(
d

dq

)n
PH ∼ H(2−n)

(
H

r

)n−2

=

(
1

r

)n−2

.

158

Let hs be the discretization sampling distance on the surface, S, and r be the closest box-

boundary distance to S. If m is the interpolation order of the free-space volume solution on S,

then the expected error rate is

E ∼
(

1

r

)m−2

hs
m = r2

(
hs
r

)m
.

Hence, if we perform an extension outside of S by one box (assuming all boxes on boundary

and one step away are of width H), then we have r ∼ H , implying E ∼ H2
(
hs
H

)m
. It is

clear that in order to at least achieve good results with an extension of one box distance, H

beyond the boundary (again assuming all boxes on the boundary have width H), we must at

least have hs < H . For example, if we refine the grid to H ′ = H/2 and leave hs as is, we

now have E ∼ 2m−2H2
(
hs
H

)m
. However, if we instead extend by a distance of 2H ′, we obtain,

E ∼ (2H ′)2
(
hs

2H′

)m
= H2

(
hs
H

)m
, so our error remains constant by extending further. So, it is

clear that either we need to maintain a relationship of refinement between hs and H , or extend

further as we refine H , or both. This would appear problematic, calling instead for us to extend

at a fixed distance. Unfortunately, extending in such a way would be unstable as we refine the

volume, so we must guarantee that we refine hs accordingly with H in order to maintain an

appropriate ratio for hs/H .

4.2.4 Extension Beyond the Boundary

Given a box, B, assume we have an under-resolved grid of points, x̂B,g, a subset of a full grid,

xB,g, such that x̂B,g only includes points in the interior of our boundary; we assume we are

given the force values, f(x̂B,g) = f̂B,g solely at these interior points. For example, consider

the partial grid of points highlighted in red in figure 4.11(left). For such a leaf box B, construct

a coefficient-to-coefficient mapping approach. Let B have width H = 2r and center cB such

that B has fewer than Nmin points (in practice, we set Nmin >= Ck3 for k being the order

159

of approximation and C some constant > 2). We then attempt to construct a region, B̃ such

that B ⊂ B̃, B̃ contains at least Nmin. For example, in figure 4.11(middle, right), we highlight

regions in red as we search outward for points.

−1.3 −1.25 −1.2 −1.15 −1.1 −1.05 −1 −0.95 −0.9 −0.85 −0.8
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Figure 4.11: Left: Select a box B which overlaps the boundary and has an under-resolved grid

of points in the interior of the domain; Middle: Locate immediately adjacent neighbors; Right:

Locate boxes further away for inclusion in extrapolation

Locate all boxes within 3H of cB which are interior or overlapping leaf boxes. Fortunately,

LBU , LBW , LBX , and LBV provide most of the information needed and a quick way of traversing T .

If there are not enough points in these boxes, investigate the boxes in LPV forB’s parent, P , since

it is clear that LPV is disjoint from the union of LBU , LBW , LBX , and LBV . While we may obtain

more points than we need, for the set of located points, X , we quicksort all x ∈ X and ignore

all points where ||x− cB||∞ > 3H . For all other points, denote this region as B̃ and construct

γ̃B̃ from all x ∈ B̃ with source values f B̃:

f B̃(x) ≈
Nk∑
j=1

γB̃j βj(x− cB). (4.8)

Since B ⊂ B̃, γB̃ can be evaluated inside of B. That is, let fB,g be the restriction of f B̃

160

onto a k3 grid on B, located at grid points xB,g such that

fB,g(x) =

Nk∑
j=1

γB̃j βj(x− cB) for all x ∈ xB,g. (4.9)

For any points x ∈ xB,g which are interior points, we use the original values, not the inter-

polated ones as our overdetermined system does not pass directly through the known f values

there. With our newly-constructed fB,g, we now use (4.7) to construct γB , and given the size

of fB,g, we are guaranteed that the system is sufficiently over-determined. We outline the steps

algorithmically in the following pseudocode. We assume that T has already been built as well

as all lists for a box B.

161

Algorithm 4 Build Coefficients for a box B with width H
STEP 1 - LOCATE INTERPOLATION POINTS

Let N = 0 and iterate throughNB and LBI

for each list L = LBU , L
B
W , L

B
X , L

B
V do

while N < Nmin do

for x ∈ A with force density fB(x) for each box A ∈ L do

store x in P [bx− cBc/H] and set N = N+1

end for

end while

end for

if N < Nmin then

Let P = Parent(B)

while P 6= Root(T) AND N < Nmin do

for x ∈ A with force density fB(x) for each box A ∈ LPV do

store x in P [bx− cBc/H] and set N = N+1

end for

P = Parent(P)

end while

end if

for i = 0 to ` = length(P) do

Quicksort x ∈ P [i] relative to x’s distance from cB

if ||x− cB ||∞ < 3H then

Store x in X

end if

end for

Let B̃ be the region enclosing all points x ∈ X with force values f B̃(x)

STEP 2 - COMPUTE APPROXIMATION FOR B

Compute γB̃ from f B̃ using (4.8)

Evaluate fB at xB,g from γB̃ using (4.9)

Compute γB from fB,g using (4.7)

162

In practice, we searchB’s parent’s interaction list, and if unable to collect enough points after

traveling this far in the tree, we reduce the order of our polynomial as necessary. If we cannot

even locate a single point, B’s coefficients are all zero, and B is ignored in the computation

stage.

For a uniformly-refined tree, figure 4.12 illustrates the coefficient construction process.

Figure 4.12: From Top-Left to Top-right. For a box B, we assume B does not have a sufficient

number of points, so we look at the boxes in its near-field (marked on the a). If there are still not

enough points, we search through B’s interaction list (b). While there are still not enough points

to build an interpolant, we recursively search B’s ancestors’ interaction lists (c). Assuming

the region marked contains a sufficient number of points (in this case, this region is NB), let

this larger region be B̃. Build an interpolant to the forces in B̃ (d). In (e), we evaluate this

polynomial approximation at grid points xB,g in B. In (f), we use the evaluated grid-located

forces to compute B’s local approximation to the force distribution.

163

4.2.5 Interpolating Solution Values to Boundary

Given our final solution, u(x) at all x ∈ xB,g for some boxB, we need to evaluate u at locations

not on our grid. Fortunately, we can use the existing mechanism to build a polynomial approxi-

mation to our solution value at the grid locations and interpolate to random locations inB. Given

our solution uB,g of size k3 on all x ∈ xB,g, we compute a kth order polynomial approximation,

αB ,

uB,g(x) ≈
Nk∑
j=1

αBj βj(x− cB), (4.10)

and evaluate u at a location, xt ∈ B, x /∈ xB,g

uB(xt) =

Nk∑
j=1

αBj βj(xt − cB) (4.11)

If a target point xt passes near an edge or corner of a box, the polynomial approximation can

evaluate poorly at this location, especially if the solution values change rapidly near box bound-

aries. This is especially true for points which represent the discretization of the boundary, for

which we need to calculate u1 from equation (4.2) for modifying the boundary value condition

for the homogeneous PDE solver in equation (4.3). In order to correct for this, interpolate u from

a cell-centered grid of points. That is, locate all target grid points in B and its nearby neighbors

such that xt is in or near the center of a box with surrounding u values. Refer to this box with xt

near its center as B̃. In figure 4.13, we show how this can occur at a target point and the sort of

domain, from which we wish to interpolate the solution at xt.

Locating the cell-centered box of points in B̃ is straightforward, and we present pseudocode

in Algorithm 5.

We look at the effects of performing this cell-centered approach to interpolating to surface

values. As an example, consider the solution value, u on a sphere of radius R = 0.8:

164

�✁✂✄ �✁✂✁☎ �✁✂✁✆ �✁✂✁✝ �✁✂✁✄ �✁✂✁ �✁✂✞☎ �✁✂✞✆
✞✂✝✄

✞✂✝✝

✞✂✝✆

✞✂✝☎

✞✂✟

✞✂✟✄

✞✂✟✝

✞✂✟✆

✞✂✟☎

✞✂✆

�✁✂✄ �✁✂✁☎ �✁✂✁✆ �✁✂✁✝ �✁✂✁✄ �✁✂✁ �✁✂✞☎ �✁✂✞✆
✞✂✝✄

✞✂✝✝

✞✂✝✆

✞✂✝☎

✞✂✟

✞✂✟✄

✞✂✟✝

✞✂✟✆

✞✂✟☎

✞✂✆

Figure 4.13: Left: For surface discretization points (in blue) and for a box such as B in red

with grid solution locations (represented by circles), we can see that interpolating to B’s surface

target point, xt from B’s solution locations is unstable; Right: We locate a cell-centered box B̃

with k3 points with the target point near the center of cB̃ .

Algorithm 5 Compute solution u at point xt ∈ B, xt /∈ xB,g for box B with radius rB
STEP 1 - LOCATE INTERPOLATION POINTS

for each box U ∈ LBU , LBW , LBX do

if ||cB − cU ||∞ ≤ 2rB then

for x ∈ U do

if ||xt − x||∞ ≤ rB then

Store x in xB̃,g and u(x) in uB̃,g

end if

end for

end if

end for

STEP 2 - COMPUTE VALUES FOR u at xt

Compute γB̃ from uB̃,g using (4.10) with cB replaced with the calculated center cB̃

Evaluate u at xt from γB̃ using (4.11) and cB̃ in place of cB

165

u(x) =
1

π

[
atan

(
sR2 − s ||x||2

)
+
π

2

]
, s = 20.

For x = (x, y, z), we place 100 equispaced points along the surface of the sphere at the slice

z = 0. Further, we build a uniformly subdivided tree for depths d = 4, 5, 6. For each depth,

we interpolate the function values u from the k3 grid of points in the box B, in which each

target point, xt is located. We then build a cell-centered box around each target point and then

interpolate from those points. We compare the difference in interpolated values in figure 4.14.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0.496

0.497

0.498

0.499

0.5

0.501

0.502

0.503

Original Method

Poly. Interp with Ctrd. Box

Actual Values

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0.4995

0.4996

0.4997

0.4998

0.4999

0.5

0.5001

0.5002

Original Method

Poly. Interp with Ctrd. Box

Actual Values

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

Original Method

Poly. Interp with Ctrd. Box

Actual Values

Figure 4.14: For a uniformly-refined tree to depth d, we place 100 surface points on a sphere at

z = 0 and interpolate from the box B, in which each target point xt is located, first using just

B’s points and then a cell-centered box B̃, built using the approach above. The target points can

be designated as x = R(cos θ, sin θ, 0) for θ ∈ [0, 2π), so we only plot a single quadrant of error

values for θ ∈ [0, π/2] as the symmetric nature of our test function produces a repetition in the

plotted error values. Left: We set d = 4. Absolute maximum error for non-centered approach is

3.9E − 03 and for centered approach is 1.1E − 03; Middle: We set d = 5. Absolute maximum

error for non-centered approach is 4.7E−04 and for centered approach is 4.0E−05; Right: We

set d = 6. Absolute maximum error for non-centered approach is 2.5E − 05 and for centered

approach is 6.9E − 07.

It is clear that performing interpolation, using this more centered approach is necessary to

166

achieve reasonable accuracy, specifically at boundary locations, where the free-space volume

solution is required.

167

5
NUMERICAL RESULTS FOR EMBEDDED

BOUNDARY SOLVER

The above algorithm has been implemented in C++, and we have tested it with several kernels,

different shapes, and for uniform and non-uniform source and target point distributions. Our

tests were run on an Intel Xeon X5650 (2.67GHz 64 bit) system with 8 CPUs and 96GB of

RAM; the major FMM computation loops are accelerated with OpenMP (Chapman et al., 2007)

as discussed in (Langston et al., 2011).

We focus on three specific kernels here: Laplace, Modified Helmholtz, and Stokes; for our

purposes, these are representative of the strength of our approach as the Laplace kernel is a scale-

invariant, scalar kernel, Modified Helmholtz is scale-variant, and Stokes is a matrix kernel. We

further tests these kernels on various shapes from the simple analytic sphere in figure 5.1(a) to

the more complex shapes in figures 5.1(b-d).

We begin by looking at the Poisson equation with Laplace kernel, first verifying the boundary

integral solver and the homogeneous solver. We then look at a uniformly-refined tree and a

high-gradient volume force on a simple sphere to investigate the effect of extending the force

versus no extension beyond the boundary. For this same high-gradient force, we also look at the

effect of adaptive refinement with the extension. We further investigate the Poisson equation on

more complex geometries. We then look at the Modified Helmholtz and Stokes equations with

different test examples.

168

Figure 5.1: 4 shapes for which we test our solvers. a) Analytic sphere; b) Closed pipe joint;

c) Two-hole torus; d) Starfish. All 4 shapes are enclosed within a box of size [−1, 1]3 and all

computations are run on a domain of size [−2, 2]3 to guarantee adequate spatial room for solvers.

5.0.6 Poisson Equation

For the Poisson equation (equation (2.7) with kernel (2.10)), we investigate the accuracy and

timings of our algorithm. We begin first by verifying the accuracy of the boundary integral solver

as well as the embedded boundary solver in the absence of a volume force. We then proceed to

look at the effects of our extension on a high-gradient force, first for uniform refinement and

then for adaptive refinement on a simple sphere. We then look at two additional examples: one

169

simple volume force and one more complex force for non-trivial geometries.

Boundary Integral Solver Test Verification We test the boundary integral equation using the

following special test case, recreating the test from (Ying et al., 2006). Specifically

∆u(x) = 0, u(x) = 1 for x ∈ Ω.

As in the previous work, we compute the error of the singular quadrature algorithm on N

boundary points from the exact double-layer density, and we compute the error at N points

very close to the interior of the domain to test the nearly-singular quadrature. The results here

show the effect of our improved blending functions as well as speedup from shared-memory

parallelization efforts despite the method’s staying largely unchanged. In table 5.1, results for

the complex geometry in figure 5.1(b) are shown. Timings for other shapes are similar, and we

show the error results for figures 5.1(a)-(c) are shown in figure 5.2.

hs N Tbdset Tbisset Tns Ts E2s E2ns Rates Ratens

0.192 968 1.42e-01 2.48e-02 1.54e-01 1.14e-01 3.70e-03 8.11e-03

0.096 2896 1.70e-01 4.66e-02 5.40e-01 2.70e-01 2.09e-04 1.99e-04 4.16 5.35

0.048 11132 6.72e-01 1.91e-01 3.54e+00 1.57e+00 7.70e-06 2.72e-06 4.76 6.19

0.024 43632 1.92e+00 1.14e+00 2.71e+01 1.20e+01 4.90e-07 2.52e-07 3.97 3.43

0.012 174780 6.06e+00 4.51e+00 2.05e+02 8.48e+01 6.10e-08 5.67e-08 3.01 2.16

0.006 694668 2.42e+01 1.91e+01 2.19e+03 7.89e+02 8.82e-09 1.67e-08 2.79 1.76

Table 5.1: Boundary Integral Solver test case for Laplacian with shape 5.1(b). These results

show an increase in accuracy, rate of convergence, and speedup from (Ying et al., 2006) through

minor improvements and enhancements to the existing method.

170

−2.5 −2 −1.5 −1 −0.5 0
−9

−8

−7

−6

−5

−4

−3

−2

−1

log(hs)

lo
g
(E

2
)

Boundary Integral Solver for Sphere

sing. eval.
near sing. eval.

−2.5 −2 −1.5 −1 −0.5 0
−9

−8

−7

−6

−5

−4

−3

−2

−1

log(hs)

lo
g
(E

2
)

Boundary Integral Solver for Closed Pipe Joint

✲�✁✂ ✲� ✲✄✁✂ ✲✄ ✲☎✁✂ ☎
✲✆

✲✝

✲✞

✲✟

✲✂

✲✠

✲✡

✲�

✲✄

❧☛☞✌✍✎✏

✑✒
✓
✔✕
✖
✗

❇☛✘✙✚✛✜✢ ✣✙✤✥☞✜✛❧ ✦☛❧✧✥✜ ★☛✜ ✩✪☛✫✬☛❧✥ ✩☛✜✘✎

Figure 5.2: For shapes 5.1(a), (b), and (c), we plot the log of the relative error in the boundary

integral solver test case versus the log of the surface discretization, hs for the Laplace equation

solver. The number of surface points for equivalent hs values for each shape are similar. As the

shape becomes more complicated, the convergence rate decreases.

171

EBI Solver with Zero Volume Force Test Verification We now test the EBI solver for the

case in which the volume force is zero. This uses the same test case as the last set of experiments,

but we now solve everywhere on a regular grid inside of Ω with discretization hvol. We time the

different components for varying levels of fineness for the volume grid, looking at all points on

an M3
vol grid for Mvol = 64, 128, 256 and 512 in [−2, 2]3 which are inside of the shape. In

table 5.2 we look at the timings and results for figure 5.1(b) with Mvol = 512.

hs Ns tbis nits tbisit tfar tnear ttot E∞ E2

0.192 968 2.13e+00 11 1.93e-01 0.00e+00 3.54e+02 3.56e+02 4.84e+00 3.71e-02

0.096 2896 5.93e+00 10 5.92e-01 7.58e-01 2.80e+02 2.87e+02 5.56e-03 5.66e-04

0.048 11132 3.54e+01 8 4.42e+00 1.11e+01 2.70e+02 3.18e+02 4.30e-04 1.42e-05

0.024 43632 2.01e+02 7 2.87e+01 2.76e+01 3.71e+02 6.03e+02 1.14e-05 3.40e-07

0.012 174780 1.61e+03 6 2.68e+02 8.68e+01 3.69e+02 2.07e+03 4.13e-07 2.74e-08

0.006 694668 1.93e+04 5 3.86e+03 1.97e+02 1.13e+03 2.07e+04 3.45e-07 1.63e-08

Table 5.2: Results for full solver in the absence of an underlying volume force for the interior

Dirichlet Poisson equation and figure 5.1(b). The total number of target points is 2231752,

consisting of all points lying on a regular grid of discretization size hvol = 0.0078125 inside

of [−2, 2]3. For larger hvol, error values are nearly equivalent while timings can vary greatly as

seen in figure 5.3(b).

For other shapes, such as figures 5.1(a) and (c), the number of surface points, Ns are on

the same order for equivalent hs; however, depending on the complexity of the shape, the error

results can vary. In figure5.3(a), we plot the relative errors for figures 5.1 (a)-(c).

Additionally, we note that for smaller Mvol, the error results are nearly identical and are

omitted here; however, as there is a larger density of points, the far-field and near-field evalu-

ations for the boundary integral solver become, the timings can be significantly different. For

example, in figure 5.3, we look at the total time of the solver for different numbers of target

172

points, corresponding to finer hvol. For coarse surface discretizations, there is a significant in-

crease in the total time of the full solver as we increase the number of target points; however, as

hs becomes smaller, the total solve times approach a constant value for finer hvol. This is to be

expected, as the boundary integral solver begins to dominate the total computation as hs → 0,

and the volume solver evaluation time becomes relatively less expensive computationally.

−2.5 −2 −1.5 −1 −0.5 0
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1

log(hs)

lo
g
(E

2
)

Poisson EBS with Zero Volume Force

Sphere
Pipe Joint
Two−Hole Torus

3.5 4 4.5 5 5.5 6 6.5 7
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

log(N
trgpts

)

lo
g
(T

(s
))

EBS for Pipe Joint with Zero Volume Force

h
v
 = 0.192

h
v
 = 0.096

h
v
 = 0.048

h
v
 = 0.024

h
v
 = 0.012

h
v
 = 0.006

Figure 5.3: For Poisson equation solver, Left: Log-log plot of relative error, E2 versus surface

discretization, hs for the three shapes in figure 5.1(a)-(c) for full embedded boundary solver in

the absence of a volume force and for target discretization hvol = 0.0078125. For the sphere

shape (figure 5.1(a)), the number of target points, Npts = 4498024; for the closed pipe joint

shape (figure 5.1(b)), Npts = 2231752; for the two-hole torus shape (figure 5.1(c)), Npts =

1298880. Right: For figure 5.1(b), we investigate the full solver as we increase the number of

volume and surface points. For small hs, the boundary solver dominates the computation time.

173

EBI Solver with Volume Force and Extension Poisson Example 1 Having tested the bound-

ary integral solver and its coupling with the embedded boundary solver in the absence of a

background volume force, we turn to the case when the underlying volume force is non-zero.

We begin by looking at purely uniform-refinement cases. That is, for a chosen level, `rhs, we

refine until all leaves are at depth d = `rhs. Further, we also initially assume that we know the

volume force everywhere within our enclosing domain Ω in figure 4.1 such that we can see how

well the extension performs in comparison.

In order to test how well the extension performs, we also want to guarantee that we choose a

force which changes quickly at the boundary, so for figure 5.1(a) and a sphere of radiusR = 0.8,

let

−∆u(x) =
6s3(||x||2 −R2)2 − 8s3(||x||2) ∗ (||x||2 −R2) + 6s

πs4(||x||2 −R2)4 + 2πs2(||x||2 −R2)2 + π
with solution

u(x) =
1

π

(
atan(s(R2 − ||x||2)) +

π

2

)
. (5.1)

An example slice, showing the high-gradient nature of this force near the surface of the boundary

can be seen in figure 5.4.

We begin by looking at results for uniform refinement without extension of the body force

beyond the boundary (assuming we know the exact force as input) versus with extension. As

the shape is of radius R = 0.8, while we embed the sphere in a box of size [−2, 2]3, we re-

strict the domain of the volume solver’s computation to [−1, 1]3. As the right-hand side moves

quickly towards zero, this does not affect the solver without extension. Further, for use with the

extension, we do not select any boxes outside of this domain, so the effect of the restriction is ir-

relevant. In table 5.3 we look at the number of leaves used in the volume solver for no extension

versus extension cases. As discussed above, when the extension is present, along with interior

and overlapping leaves, only exterior leaves one step away from the boundary are included as

sources.

174

Figure 5.4: For sphere shape 5.1(a) of radius R = 0.8 and high gradient force in equation 5.1

with s = 10, we look at a particular slice for z = 0. The force is spherically symmetric about

the origin.

In figures 5.5and 5.6, we compare the plots for uniform refinement without the extension

versus using the extension. The complete tables for these results are compiled in the Appendix

section A.2 in tables A.1- A.4, for polynomial orders k = 3 to k = 6. As can be seen in the

plots below, our extension performs well in comparison to knowing the force everywhere as

we increase the depth of the uniform refinement as well as the scale for the high-gradient test

function. As the scaling variable, s increases, we see that the rate of convergence slows quickly

for the solver; however, the extension tests continue to perform as well as the non-extension

cases.

175

Leaf Count for No Extension Leaf Count for Extension

Td hs Ns Lin Lcrv Lvsout Ltot Lin Lcrv Lvsout Ltot

2 0.096 2400 0 56 8 64 0 56 8 64

3 0.048 9600 56 224 232 512 56 224 128 408

4 0.024 38400 696 776 2264 4096 696 776 512 1984

5 0.012 149784 7280 3056 22432 32768 7280 3056 1872 12208

6 0.012 149784 64288 12368 185488 262144 64288 12368 6728 83384

Table 5.3: For the full solver and uniform refinement using figure 5.1(a) with radius R = 0.8,

we solve the Poisson equation with high-gradient right-hand side. When no extension is used,

we assume all leaves in [−1, 1]3 are used; whereas, when we introduce our extension, only

exterior leaves with a neighbor leaf overlapping the boundary are used in the computation. The

corresponding leaf counts are shown for varying tree depths, Td, surface discretization, hs and

surface points, Ns. Lin, Lcrv, and Lout refer to the total number of interior, overlapping, and

exterior leaves used in the volume solver computation, respectively.

176

−6.5 −6 −5.5 −5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1

−depth

lo
g
(E

2
)

K=3 with No Extension

s=2

s=5

s=10

s=20

s=40

s=80
−6.5 −6 −5.5 −5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1

−depth

lo
g
(E

2
)

K=3 with Extension

s=2

s=5

s=10

s=20

s=40

s=80

−6.5 −6 −5.5 −5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1

−depth

lo
g
(E

2
)

K=4 with No Extension

s=2

s=5

s=10

s=20

s=40

s=80
−6.5 −6 −5.5 −5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1

−depth

lo
g
(E

2
)

K=4 with Extension

s=2

s=5

s=10

s=20

s=40

s=80

Figure 5.5: Uniform refinement E2 versus depth plots for (left) no extension (force known ev-

erywhere) and (right) extension to overlapping and exterior leaves for polynomial approximation

of orders k = 3, 4 (top and bottom), results from tables A.1 and A.2, respectively.

177

✲�✁✂ ✲� ✲✂✁✂ ✲✂ ✲✄✁✂ ✲✄ ✲☎✁✂ ✲☎ ✲✆✁✂ ✲✆ ✲✝✁✂
✲✞

✲✟

✲✠

✲�

✲✂

✲✄

✲☎

✲✆

✲✝

✵

✝

✡☛☞✌✍✎

❧✏
✑
✒✓
✷
✮

❑✔✕ ✖✗✍✎ ✘✙ ✚✛✍☞✜✢✗✙✜

✢✔s

✢✔✕

✢✔✣✤

✢✔s✤

✢✔✥✤

✢✔✦✤

✲�✁✂ ✲� ✲✂✁✂ ✲✂ ✲✄✁✂ ✲✄ ✲☎✁✂ ✲☎ ✲✆✁✂ ✲✆ ✲✝✁✂
✲✞

✲✟

✲✠

✲�

✲✂

✲✄

✲☎

✲✆

✲✝

✵

✝

✡☛☞✌✍✎

❧✏
✑
✒✓
✷
✮

❑✔✕ ✖✗✍✎ ✘✙✍☞✚✛✗✜✚

✛✔s

✛✔✕

✛✔✢✣

✛✔s✣

✛✔✤✣

✛✔✥✣

✲�✁✂ ✲� ✲✂✁✂ ✲✂ ✲✄✁✂ ✲✄ ✲☎✁✂ ✲☎ ✲✆✁✂ ✲✆ ✲✝✁✂
✲✞

✲✟

✲✠

✲�

✲✂

✲✄

✲☎

✲✆

✲✝

✵

✝

✡☛☞✌✍✎

❧✏
✑
✒✓
✷
✮

❑✔✕ ✖✗✍✎ ✘✙ ✚✛✍☞✜✢✗✙✜

✢✔s

✢✔✣

✢✔✤✥

✢✔s✥

✢✔✦✥

✢✔✧✥

−6.5 −6 −5.5 −5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1

−depth

lo
g
(E

2
)

K=6 with Extension

s=2

s=5

s=10

s=20

s=40

s=80

Figure 5.6: Uniform refinement E2 versus depth plots for (left) no extension (force known ev-

erywhere) and (right) extension to overlapping and exterior leaves for polynomial approximation

of orders k = 5, 6 (top and bottom), results from tables A.3 and A.4, respectively.

178

We now turn to looking at what happens when we extend our solver with adaptive-refinement.

We use an adaptive-refinement strategy similar to (Ethridge and Greengard, 2001). For this, we

compute a kth-order polynomial approximation, γB , to the force gB(x) sampled on a k× k× k

grid. We let g̃B be the force evaluated on a refined 2k× 2k× 2k grid. If
∣∣∣∣gB(x)− g̃B(x)

∣∣∣∣
2
>

εrhs, B is subdivided, and the octree is balanced as needed. For overlapping leaves, we only

utilize the subsets of full grids, where the subset lies in the interior of the domain. As the L2

evaluation comparison is effectively scaled by the volume of the corresponding leaf box, we are

guaranteed that refinement will terminate, even for leaves with few interior gridpoints. When

the subset of points is empty, we compare the volume of the leaf box to εrhs. For example, in

figure 5.7, we see how the finest refinement takes place near the boundary.

Figure 5.7: Example slice of the octree for high-gradient force in equation 5.1 at z = 0 and

s = 10 for εrhs = 4, k = 6. Leaves in the octree marked as interior are indicated in blue;

exterior leaves are indicated in red; and overlapping leaves are indicated in green.

For polynomial orders k = 3 to k = 6, we look at how our solver performs as we decrease

εrhs. From the uniform refinement tests, we can see that for s > 10, the solver does not perform

179

as well for k = 3, so we only look at adaptive refinement for k ≥ 4 for s > 10. Similarly, we

only look at results for k = 4 up to s = 20 and for k = 5 up to s = 40. We compile the results

for all of these tests in the Appendix section A.2 in tables A.5- A.10, and we plot the results for

k = 3 and k = 4 in figure 5.8 and for k = 5 and k = 6 in figure 5.9.

−8 −7 −6 −5 −4 −3 −2 −1 0
−6.5

−6

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−log(e
rhs

)

lo
g

(E
2
)

k=3 with Extension and Adap. Refin.

s=2

s=5

s=10
−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0

−8

−7

−6

−5

−4

−3

−2

−1

−log(e
rhs

)

lo
g

(E
2
)

k=4 with Extension and Adap. Refin.

s=2

s=5

s=10

s=20

Figure 5.8: Log-log plot for adaptive refinement and E2 versus εrhs plots using our extension to

overlapping and exterior leaves for polynomial approximation of order k = 3 (Left) and k = 4

(Right), from results tables A.5 and A.6, respectively.

For the adaptive solver, we can clearly solve to greater accuracy due to increased memory

savings as we need fewer leaves to resolve the interior leaves. In order to compare how the

adaptive solver performs to the uniform refinement solver, we could look at each solvers results

for specific depths; however, for the adaptive solver, multiple values of εrhs can result in a single

octree maximum depth. We instead look at how the resulting tree, T , approximates the full

volume force through the following metric; let ET2 be the sum of the error in the volume force

among all boxes, B. First, we evaluate

eB =

(∫
B
|f(2k)(x)− f̃(2k)(x)|2dx

)1/2

,

where f̃(2k)(x) is the evaluation of the polynomial approximation,γ, to f(x), restricted to each

180

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0
−9

−8

−7

−6

−5

−4

−3

−2

−1

−log(e
rhs

)

lo
g

(E
2
)

k=5 with Extension and Adap. Refin.

s=2

s=5

s=10

s=20

s=40
−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1

−log(e
rhs

)

lo
g

(E
2
)

k=6 with Extension and Adap. Refin.

s=2

s=5

s=10
s=20

s=40

s=80

Figure 5.9: Log-log plot for adaptive refinement and E2 versus εrhs plots using our extension to

overlapping and exterior leaves for polynomial approximation of order k = 5 (Left) and k = 6

(Right), from results tables A.8 and A.10, respectively.

leaf box B, on a refined grid of size (2k)3 for some polynomial order, k. We further note that

as described above, γB , on each leaf box B is build from a uniform grid of size k3 (or subset

thereof for leaves overlapping the boundary as discussed above). Now, to evaluate ET2 , we sum

eB among all boxes and then compute fcomp by normalizing by the L2 norm of the volume force

over the entire tree:

ET2 =
∑
B∈T

eB , and

fcomp = ET2 / ||f ||
T
2 .

In figures 5.10-5.16, we plot the results for uniform refinement against adaptive refinement

by comparing the relative error results relative to the fcomp metric. Again, for k = 3 in fig-

ure 5.10, we only look at s = 2, 5, 10; in figure 5.11 and 5.12, we only look at s = 2, 5, 10, 20

for k = 4; in figures 5.13 and 5.14, we look at s = 2, 5, 10, 20, 40 for k = 5; finally, for k = 6,

we look at all computed values of s in figures 5.15 and 5.16.

181

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5
−6.5

−6

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

log(f
comp

)

lo
g
(E

2
)

k=3 with Extension and Adap. Refin., s = 2

Uniform Refinement

Adaptive Refinement
−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5

−6

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

log(f
comp

)

lo
g
(E

2
)

k=3 with Extension and Adap. Refin., s = 5

Uniform Refinement

Adaptive Refinement
−4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

log(f
comp

)

lo
g
(E

2
)

k=3 with Extension and Adap. Refin., s = 10

Uniform Refinement

Adaptive Refinement

Figure 5.10: Log-log plots comparing the results for uniform refinement against adaptive refine-

ment by comparing relative error results for both solvers versus the error metric, fcomp, computed

at all interior and overlapping leaf boxes, B in our octree T . For k = 3: Left: s = 2; Middle:

s = 5; Right s = 10.

−7 −6 −5 −4 −3 −2 −1
−8

−7

−6

−5

−4

−3

−2

log(f
comp

)

lo
g
(E

2
)

k=4 with Extension and Adap. Refin., s = 2

Uniform Refinement

Adaptive Refinement
−7 −6 −5 −4 −3 −2 −1 0

−6.5

−6

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

log(f
comp

)

lo
g
(E

2
)

k=4 with Extension and Adap. Refin., s = 5

Uniform Refinement

Adaptive Refinement

Figure 5.11: Log-log plots comparing the results for uniform refinement against adaptive re-

finement by comparing relative error results for both solvers versus the error metric, fcomp. For

k = 4: Left: s = 2; Right: s = 5.

182

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5
−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

log(f
comp

)

lo
g
(E

2
)

k=4 with Extension and Adap. Refin., s = 10

Uniform Refinement

Adaptive Refinement
−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

log(f
comp

)

lo
g
(E

2
)

k=4 with Extension and Adap. Refin., s = 20

Uniform Refinement

Adaptive Refinement

Figure 5.12: Log-log plots comparing the results for uniform refinement against adaptive re-

finement by comparing relative error results for both solvers versus the error metric, fcomp. For

k = 4: Left: s = 10; Right: s = 20.

−8 −7 −6 −5 −4 −3 −2 −1
−9

−8

−7

−6

−5

−4

−3

−2

log(f
comp

)

lo
g
(E

2
)

k=5 with Extension and Adap. Refin., s = 2

Uniform Refinement

Adaptive Refinement
−8 −7 −6 −5 −4 −3 −2 −1

−8

−7

−6

−5

−4

−3

−2

−1

log(f
comp

)

lo
g
(E

2
)

k=5 with Extension and Adap. Refin., s = 5

Uniform Refinement

Adaptive Refinement
−7 −6 −5 −4 −3 −2 −1 0

−7

−6

−5

−4

−3

−2

−1

log(f
comp

)

lo
g
(E

2
)

k=5 with Extension and Adap. Refin., s = 10

Uniform Refinement

Adaptive Refinement

Figure 5.13: Log-log plots comparing the results for uniform refinement against adaptive re-

finement by comparing relative error results for both solvers versus the error metric, fcomp. For

k = 5: Left: s = 2; Middle: s = 5; Right: s = 10.

183

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−6

−5

−4

−3

−2

−1

0

log(f
comp

)

lo
g
(E

2
)

k=5 with Extension and Adap. Refin., s = 20

Uniform Refinement

Adaptive Refinement
−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

log(f
comp

)

lo
g
(E

2
)

k=5 with Extension and Adap. Refin., s = 40

Uniform Refinement

Adaptive Refinement

Figure 5.14: Log-log plots comparing the results for uniform refinement against adaptive re-

finement by comparing relative error results for both solvers versus the error metric, fcomp. For

k = 5: Left: s = 20; Right: s = 40.

−10 −9 −8 −7 −6 −5 −4 −3 −2
−9

−8

−7

−6

−5

−4

−3

log(f
comp

)

lo
g
(E

2
)

k=6 with Extension and Adap. Refin., s = 2

Uniform Refinement

Adaptive Refinement
−8 −7 −6 −5 −4 −3 −2 −1

−8

−7

−6

−5

−4

−3

−2

log(f
comp

)

lo
g
(E

2
)

k=6 with Extension and Adap. Refin., s = 5

Uniform Refinement

Adaptive Refinement
−7 −6 −5 −4 −3 −2 −1 0

−7

−6

−5

−4

−3

−2

−1

log(f
comp

)

lo
g
(E

2
)

k=6 with Extension and Adap. Refin., s = 10

Uniform Refinement

Adaptive Refinement

Figure 5.15: Log-log plots comparing the results for uniform refinement against adaptive re-

finement by comparing relative error results for both solvers versus the error metric, fcomp For

k = 6: Left: s = 2; Middle: s = 5; Right: s = 10.

184

−7 −6 −5 −4 −3 −2 −1 0
−6

−5

−4

−3

−2

−1

0

1

log(f
comp

)

lo
g
(E

2
)

k=6 with Extension and Adap. Refin., s = 20

Uniform Refinement

Adaptive Refinement
−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

log(f
comp

)

lo
g
(E

2
)

k=6 with Extension and Adap. Refin., s = 40

Uniform Refinement

Adaptive Refinement
−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

log(f
comp

)

lo
g
(E

2
)

k=6 with Extension and Adap. Refin., s = 80

Uniform Refinement

Adaptive Refinement

Figure 5.16: Log-log plots comparing the results for uniform refinement against adaptive re-

finement by comparing relative error results for both solvers versus the error metric, fcomp For

k = 6: Left: s = 20; Middle: s = 40; Right: s = 80.

As can be seen, our adaptive solver returns results that are of an equivalent nature to the

uniform solver when we compare how well both types of solvers approximate the volume force.

Additionally, as can be seen, we can often return equivalent results using significantly fewer leaf

boxes with adaptivity, especially as we increase the gradient near the boundary, and the force

becomes smoother in the interior of the sphere. Further, as a result of needing fewer boxes to

resolve the force, we can achieve greater accuracy and trees of greater depth. In particular, for

s > 2 for all orders k of the polynomial approximation, we can exceed the accuracy of the

uniform solver.

EBI Solver with Volume Force and Extension Poisson Example 2 For this experiment, we

replicate an experiment from (Ying et al., 2006) in order to show the increased accuracy and

speed of the current implementation. Additionally, the current work assumes that the force is

only given in the interior of the domain, so we are performing the extension here. For x =

(x1, x2, x3)

185

−∆u(x) = (x1 + x2 + x3),

u(x) = exp(
√

2πx1) sinπ(x2 + x3) +
(
x3

1 + x3
2 + x3

3

)
/6. (5.2)

As can be seen, the force, f(x) = −(x1 + x2 + x3) is very simple, and our polynomial

approximation will evaluate it exactly. In such cases, the adaptive refinement strategy used

for building the needs to take this into account. Namely, when
∣∣∣∣gB(x)− g̃B(x)

∣∣∣∣
2

= 0, but∣∣∣∣gB(x)
∣∣∣∣
∞ > 0, we refine B when

∫
B dy > εrhs. For this test, we fix the number of target

points at a fine grid inside of the shape in figure 5.1(b), enclosed within [−0.8, 0.8]3. Addi-

tionally, we fix the polynomial approximation to k = 6 for all tests. Refinement occurs solely

inside of the domain with balancing across the domain as necessary to include all external boxes

needed for the volume solver. We compile the results in table 5.4 and figure 5.18(a).

hs εrhs tvfmm tbis nits tfar tnear ttot E∞ E2

0.192 10−2 1.72e+00 2.48e+00 13 0.00e+00 4.01e+02 4.06e+02 2.15e+00 8.22e-02

0.096 10−4 2.22e+00 9.36e+00 13 8.01e-01 3.21e+02 3.33e+02 1.27e-02 3.58e-03

0.048 10−6 2.86e+00 4.63e+01 12 1.12e+01 2.36e+02 2.98e+02 7.60e-04 6.00e-05

0.024 10−8 9.46e+00 3.56e+02 12 2.85e+01 2.71e+02 6.69e+02 1.80e-05 1.98e-06

0.012 10−10 8.61e+01 3.01e+03 12 8.66e+01 3.50e+02 3.54e+03 8.86e-07 1.053-07

0.006 10−10 8.13e+01 2.15e+04 12 2.42e+02 1.02e+03 2.29e+04 1.80e-07 2.65e-08

Table 5.4: EBI Poisson closed pipe joint. Non-zero volume force. Here, we set the volume

target discretization to hvol = 0.0078125 with target point size Nvol = 2231752 for all tests

from example problem in equation 5.2. We fix the polynomial approximation at k = 6. For

a specific hs, the number of surface points is equivalent to those given in Table 5.1. For εrhs,

the depth of the tree Td and the number of corresponding volume source points, Nsrc used in

computing the extension for the free-space volume solver is given in Table 5.5.

186

εrhs Td Nsrc

10−2 1 232

10−4 2 1784

10−6 4 117600

10−8 5 941640

10−10 6 7530176

Table 5.5: For Table 5.4, for Poisson Test Example 2, for a given εrhs, the resulting octree is of

depth Td. We fix the polynomial approximation to order k = 6, so each leaf has either a full grid

of size 63 or a fraction thereof (for leaves overlapping the boundary). The number of volume

source points from these full or partial grids is given by Nsrc. This is the number of points

available for building the polynomial approximation for interior leaves or building the extension

for overlapping or exterior leaves.

187

EBI Solver with Volume Force and Extension Poisson Example 3 We introduce an example

in which the force is non-trivial such that the polynomial approximation does not exactly recover

the right hand side. Using the shape in figure 5.1(c), we solve

−∆u(x) =

7∑
i=1

3π2 sin (π(x− xi)) sin (π(y − yi)) sin (π(z − zi))

−exp(q ||x− xi||2)(4q ||x||2 + 6q) with solution

u(x) =
7∑
i=1

sin (π(x− xi)) sin (π(y − yi)) sin (π(z − zi)) + exp(q ||x− xi||2), (5.3)

where xi = (0, 0, c) for c = 0,±0.2,±0.6,±1.0 and q = −10. We choose theses coordinates

as they represent the edges of each hole in the shape (and the outside edges and center), guaran-

teeing the boundary is an area of interest. Again, we fix the polynomial approximation to order

k = 6. An example slice of the adaptively-refined octree is shown in figure 5.17. Numerical

results are seen in table 5.8 and figure 5.18(b).

hs Ns

0.192 1048

0.096 3434

0.048 12024

0.024 45074

0.012 175816

0.006 693093

Table 5.6: For figure 5.1(c), given surface

discretization hs, Ns is the corresponding

number of surface points.

εrhs Td Nsrc

10−2 3 7576

10−4 4 62352

10−6 5 93384

10−8 5 546880

10−10 6 4374712

Table 5.7: For Table 5.8; given εrhs, the

resulting octree is of depth Td. We fix the

polynomial approximation to order k = 6,

and the definition of Nsrc follows the same

as in Table 5.5.

188

Figure 5.17: Example slice of the octree for Poisson example 3 with nonzero volume force in

equation 5.3 for shape 5.1(c). Here, we set εrhs = 10−6 and the polynomial order k = 6 for

refinement. Leaves in the octree marked as interior are indicated in blue; exterior leaves are

indicated in red; and overlapping leaves are indicated in green.

189

hs εrhs tvfmm tbis nits tfar tnear ttot E∞ E2

0.192 10−2 2.16e+00 3.42e+00 17 0.00e+00 2.89e+02 2.95e+02 6.21e+00 1.23e-01

0.096 10−4 2.34e+00 1.24e+01 16 0.00e+00 2.68e+02 2.83e+02 1.92e-02 4.58e-03

0.048 10−6 2.77e+00 7.34e+01 16 2.360e-01 2.30e+02 3.08e+02 9.68e-04 9.21e-05

0.024 10−8 8.50e+00 3.96e+02 14 3.08e+00 2.47e+02 6.57e+02 3.86e-05 2.02e-06

0.012 10−10 6.11e+01 2.60e+03 14 1.78e+01 3.12e+02 3.00e+03 1.93e-06 1.440e-07

0.006 10−10 6.03e+01 2.77e+04 14 8.16e+01 1.09e+03 2.90e+04 4.92e-07 1.74e-08

Table 5.8: Full EBI solver for Poisson equation example 3 for figure 5.1(c) and non-trivial

volume force. Here, we set the volume target discretization to hvol = 0.0078125 with target

point size Nvol = 1298880 for all tests from example problem in equation 5.3. We fix the

polynomial approximation order to k = 6. Table 5.6 gives the number of surface points used

in the boundary integral solver for a specific surface discretization, hs and Table 5.7 gives the

corresponding volume source points, Nsrc used in computing the extension for the free-space

volume solver.

.

190

−2.5 −2 −1.5 −1 −0.5 0
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1

log(hs)

lo
g

(E
rr

o
r)

Embedded Boundary Solver for Closed Pipe Joint

E
2
 error

E
inf

 error

−2.5 −2 −1.5 −1 −0.5 0
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1

log(hs)

lo
g

(E
rr

o
r)

Embedded Boundary Solver for Two−Hole Torus

E
2
 error

E
inf

 error

Figure 5.18: Left: Log-log plot of relative error versus surface discretization for the EBI solver

with non-zero volume force in example 2 and table 5.4 above for the closed pipe joint shape in

figure 5.1(b). Right: Log-log plot of relative error versus surface discretization for embedded

boundary solver with non-zero volume force in example 3 and table 5.8 above for the two-hole

torus shape in figure 5.1(c).

191

5.0.7 Modified Helmholtz Equation

For the Modified Helmholtz equation (equation (2.8) with kernel (2.11)), we investigate the

numerical accuracy of our algorithm. For this scalar kernel, we do not investigate the boundary

integral solver or full solver with no volume force as the results are nearly identical as for the

Poisson equation. To see this, we can simply set α = 0 and obtain the Poisson equation. We

note that as the kernel is inhomogeneous, matrices are built for all levels of the octree in the

FMM for both particle and volume solvers; however, as we compute the matrices once and store

them for later use, the additional computation time is negligible, especially if we precompute all

interaction matrices and load them at run-time.

We look at two test cases with adaptive refinement and complex geometries, fixing the poly-

nomial approximation to 4th and 6th order.

EBI Solver with Volume Force and Extension Modified Helmholtz Example 1 For this test

case, we look at a simple volume force that can be approximated exactly by our polynomials.

Specifically,

αu(x)−∆u(x) = α(1 + xyz), u(x) = 1 + xyz.

We choose α = 1 and precompute the interaction matrices needed for the volume solver; for

all tests and for a given polynomial order k and FMM precision εrhs, we compute the interaction

matrices up to precision εrhs/10. For this example as with the second Poisson example, since

our polynomial approximates the force exactly, the extension is trivial with our approach.

In order to increase the difficulty, we use the starfish shape in figure 5.1(d). Additionally, we

fix the underlying target grid discretization at hvol = 0.0078125, for which Ntrgpts = 621996.

Results for k = 4 and k = 6 can be seen in table 5.9.

192

hs εrhs tvfmm tbis nits tfar tnear ttot E∞ E2

Polynomial approximation of order k = 4

0.048 10−4 1.59e+00 3.27e+01 15 0.00e+00 1.28e+02 1.64e+02 6.22e-03 5.56e-04

0.024 10−6 2.16e+00 2.30e+02 14 1.88e+00 1.56e+02 3.92e+02 1.81e-04 8.51e-06

0.012 10−8 2.44e+00 1.64e+03 14 1.12e+01 1.91e+02 1.85e+03 1.67e-05 4.18e-07

0.006 10−10 6.28e+00 1.78e+04 14 5.92e+01 5.65e+02 1.84e+04 3.62e-06 7.52e-08

Polynomial approximation of order k = 6

0.048 10−4 1.93e+00 3.16e+01 15 0.00e+00 1.27e+02 1.62e+02 5.20e-03 4.71e-04

0.024 10−6 3.28e+00 2.71e+02 14 1.94e+00 1.64e+02 4.42e+02 1.81e-04 8.50e-06

0.012 10−8 6.38e+00 1.90e+03 14 1.13e+01 1.88e+02 2.14e+03 1.67e-05 4.15e-07

0.006 10−10 1.650e+01 1.70e+04 14 6.02e+01 5.50e+02 1.77e+04 3.62e-06 7.49e-08

Table 5.9: EBI solver for the Modified Helmholtz equation for figure 5.1(d) and non-zero volume

force. Non-zero Here, we set the volume target discretization to hvol = 0.0078125 with target

point size Nvol = 621996 and vary the polynomial approximation order for k = 4, 6. Table 5.10

gives the number of surface points used in the boundary integral solver for a specific surface

discretization, hs and Table 5.11 gives the corresponding volume source points, Nsrc used in

computing the extension for the free-space volume solver.

193

hs Ns

0.048 7088

0.024 29062

0.012 123466

0.006 452792

Table 5.10: For figure 5.1(d), given surface

discretization hs, Ns is the corresponding

number of surface points.

εrhs Td Nsrc Td Nsrc

k = 4 k = 6

10−4 3 1184 2 528

10−6 4 9564 4 32756

10−8 5 77748 5 262232

10−10 6 621996 6 2099108

Table 5.11: For Table 5.9, for Helmholtz

Test Example 1, for a given εrhs, the result-

ing octree is of depth Td. We fix the poly-

nomial approximation to order k = 6, and

the definition of Nsrc follows the same as

in Table 5.11.

194

EBI Solver with Volume Force and Extension Modified Helmholtz Example 2 For our

second example with the Modified Helmholtz kernel, we look at a more complicated force.

Again, this is similar to the second Poisson example in terms of the solution; whereas the right-

hand side is more complex due to the introduction of the additional term. Namely, we solve

αu(x)−∆u(x) = α
(
exp(
√

2πx) sinπ(y + z) +
(
x3 + y3 + z3

)
/6
)

+ (x+ y + z),

u(x) = exp(
√

2πx) sinπ(y + z) +
(
x3 + y3 + z3

)
/6. (5.4)

We choose α = 1
4 and solve this problem inside of the shape in figure 5.1(b); we note that

the nature of this force leads to a highly nonuniform octree, especially along the boundaries. An

example slice of the octree can be seen in figure 5.19.

Figure 5.19: Example slice of the octree for the nonuniform force in equation 5.4 at z = 0 for

α = 1/4, k = 4 and εrhs = 10−8. Leaves in the octree marked as interior are indicated in blue;

exterior leaves are indicated in red; and overlapping leaves are indicated in green.

We again fix the target volume discretization at the fine level of hvol = 0.0078125 for

Ntrgpts = 2231752 for this shape.

195

hs εrhs tvfmm tbis nits tfar tnear ttot E∞ E2

Polynomial approximation of order k = 4

0.192 10−2 2.34e+00 2.73e+00 13 0.00e+00 4.18e+02 4.23e+02 1.56e+00 7.83e-02

0.096 10−4 3.14e+00 1.20e+01 13 1.65e+00 3.18e+02 3.35e+02 1.27e-02 3.58e-03

0.048 10−6 4.86e+00 6.13e+01 13 1.62e+01 2.93e+02 3.77e+02 7.57e-04 5.99e-05

0.024 10−8 9.77e+00 3.92e+02 13 4.69e+01 3.33e+02 7.86e+02 1.78e-05 1.99e-06

0.012 10−10 1.13e+01 3.26e+03 13 1.55e+02 4.31e+02 3.88e+03 8.74e-07 1.06e-07

0.006 10−10 1.56e+01 2.79e+04 13 4.00e+02 1.35e+03 2.97e+04 1.82e-07 3.02e-08

Polynomial approximation of order k = 6

0.192 10−2 2.45e+00 2.43e+00 13 0.00e+00 3.99e+02 4.58e+02 1.58e+00 7.88e-02

0.096 10−4 2.48e+00 8.67e+00 13 1.41e+00 3.08e+02 3.25e+02 1.26e-02 3.55e-03

0.048 10−6 3.71e+00 5.36e+01 13 1.59e+01 2.69e+02 3.43e+02 7.58e-04 5.99e-05

0.024 10−8 5.02e+00 3.94e+02 13 4.65e+01 3.30e+02 7.77e+02 1.78e-05 1.99e-06

0.012 10−10 4.99e+01 2.99e+03 13 1.54e+02 4.12e+02 3.62e+03 8.99e-07 1.07e-07

0.006 10−10 5.30e+01 2.90e+04 13 4.06e+02 1.34e+03 3.08e+04 1.84e-07 3.23e-08

Table 5.12: EBI solver for the Modified Helmholtz equation for figure 5.1(b) and non-zero

volume force. Non-zero Here, we set the volume target discretization to hvol = 0.0078125 with

target point size Nvol = 2231752 and vary the polynomial approximation order for k = 4, 6.

196

hs Ns

0.0192 968

0.096 2896

0.048 11132

0.024 43632

0.012 174780

0.006 694668

Table 5.13: For figure 5.1(b), given surface

discretization hs, Ns is the corresponding

number of surface points.

εrhs Td Nsrc Td Nsrc

k = 4 k = 6

10−2 3 508 2 1008

10−4 3 732 3 2464

10−6 5 29100 4 14016

10−8 5 232448 4 97976

10−10 6 1729068 6 2377264

Table 5.14: For Table 5.12, for Helmholtz

Test Example 1, for a given εrhs, the result-

ing octree is of depth Td. We fix the poly-

nomial approximation to order k = 6, and

the definition of Nsrc follows the same as

in Table 5.14.

197

5.0.8 Stokes Equations

For the Stokes equations (equation (2.9) with kernel (2.12)), we investigate the accuracy and

timings of our algorithm. We begin first by verifying the accuracy of the boundary integral

solver as well as the EBI solver in the absence of a volume force. We then proceed to look at the

effects of our extension on a high-gradient force as with the Poisson equation; however, we only

look at the adaptive refinement case as the extension algorithm operates in the same manner as

before.

We then look at one additional example, a complex force for a non-trivial geometry. For

all examples, we set µ = 1. As the kernel is homogeneous, we can use the same interaction

matrices, scaling as necessary if a different µ value is desired.

Boundary Integral Solver As the Stokes equations present us with a matrix kernel, we retest

the boundary integral equation using the following special test case, again from (Ying et al.,

2006) in order to look at improved results and timings. Specifically,

∆u(x) = 0, u(x) = ω × x for x ∈ Ω,

where ω is the angular velocity vector of the rotation with ||ω|| = 1.

As in the previous work, we compute the error of the singular quadrature algorithm on N

boundary points from the exact double-layer density, and we compute the error at N points very

close to the interior of the domain to test the nearly-singular quadrature. Again, we show results

for a single shape in table 5.15 for figure 5.1(b) in order to highlight increased accuracy and

speedup over the previous work; timings for other shapes are similar for equivalent hs values,

and we show error results for this and additional shapes in figure 5.20.

198

hs N Tbdset Tbisset Tns Ts E2s E2ns

0.192 968 1.765e-01 2.571e-02 2.359e-01 3.052e-01 6.479e-03 4.550e-02

0.096 2896 2.641e-01 5.790e-02 1.025e+00 9.536e-01 4.363e-04 7.646e-04

0.048 11132 6.817e-01 3.204e-01 5.619e+00 6.814e+00 1.498e-05 8.689e-06

0.024 43632 1.884e+00 1.154e+00 4.270e+01 1.190e+02 8.009e-07 3.810e-07

0.012 174780 6.123e+00 4.806e+00 3.307e+02 9.119e+02 9.380e-08 7.263e-08

0.006 694668 2.397e+01 2.691e+01 4.960e+03 5.320e+03 1.400e-08 1.960e-08

Table 5.15: Boundary Integral Solver test case for the Stokes kernel with shape 5.1(b). These

results show an increase in accuracy, rate of convergence, and speedup from (Ying et al., 2006)

through minor improvements and enhancements to the existing method.

−2.5 −2 −1.5 −1 −0.5 0
−9

−8

−7

−6

−5

−4

−3

−2

−1

log(hs)

lo
g
(E

2
)

Boundary Integral Solver for Sphere

sing. eval.
near sing. eval.

−2.5 −2 −1.5 −1 −0.5 0
−9

−8

−7

−6

−5

−4

−3

−2

−1

log(hs)

lo
g
(E

2
)

Boundary Integral Solver for Closed Pipe Joint

−2.5 −2 −1.5 −1 −0.5 0
−9

−8

−7

−6

−5

−4

−3

−2

−1

log(hs)

lo
g
(E

2
)

Boundary Integral Solver for Two−Hole Torus

Figure 5.20: For shapes 5.1(a), (b), and (c), we plot the log of the relative error in the boundary

integral solver test case versus the log of the surface discretization, hs for the Stokes equations

solver. The number of surface points for equivalent hs values for each shape are similar. As the

shape becomes more complicated, the convergence rate decreases.

199

EBI Solver with Zero Volume Force We now test the EBI solver for the case in which the

volume force is zero. This uses the same test case as the last set of experiments, but we now

solve everywhere on a regular grid inside of Ω with discretization hvol. We time the different

components for varying levels of fineness for the volume grid, looking at all points on an M3
vol

grid for Mvol = 64, 128, 256 and 512 in [−2, 2]3 which are inside of the shape.

hs Ns tbis nits tbisit tfar tnear ttot E∞ E2

Nvol = 2231752, hvol = 0.0078125

0.192 968 8.38e+00 21 3.99e-01 0.00e+00 7.14e+02 7.15e+02 9.78e+00 6.97e-02

0.096 2896 2.62e+01 18 1.46e+00 5.06e+00 7.00e+02 7.32e+02 5.75e-03 1.08e-03

0.048 11132 1.11e+02 15 7.38e+00 5.41e+01 6.56e+02 8.23e+02 4.44e-04 4.05e-05

0.024 43632 6.51e+02 13 5.01e+01 2.15e+02 1.09e+03 1.96e+03 1.11e-05 6.16e-07

0.012 174780 3.72e+03 11 3.38e+02 1.09e+03 1.90e+03 6.72e+03 3.57e-06 2.20e-07

Table 5.16: EBI Stokes closed pipe joint. Zero volume force.

200

−2.5 −2 −1.5 −1 −0.5 0
−8

−7

−6

−5

−4

−3

−2

−1

0

1

log(hs)

lo
g
(E

2
)

Stokes EBS with Zero Volume Force

Sphere
Pipe Joint
Two−Hole Torus

3.5 4 4.5 5 5.5 6 6.5 7
1

1.5

2

2.5

3

3.5

4

log(N
trgpts

)

lo
g
(T

(s
))

EBS for Pipe Joint with Zero Volume Force

h
s
 = 0.192

h
s
 = 0.096

h
s
 = 0.048

h
s
 = 0.024

h
s
 = 0.012

Figure 5.21: For Stokes equations solver, Left: Log-log plot of relative error, E2 versus surface

discretization, hs for the three shapes in figure 5.1(a)-(c) for full embedded boundary solver in

the absence of a volume force and for target discretization hvol = 0.0078125. For the sphere

shape (figure 5.1(a)), the number of target points, Npts = 4498024; for the closed pipe joint

shape (figure 5.1(b)), Npts = 2231752; for the two-hole torus shape (figure 5.1(c)), Npts =

1298880. Right: For figure 5.1(b), we investigate the full solver as we increase the number of

volume and surface points. For small hs, the boundary solver dominates the computation time.

201

EBI Solver with Volume Force and Stokes Equations Example 1 For this example, we

look at a high-gradient force with adaptive-refinement, varying the polynomial approximation,

the degree of the gradient force while attempting to extend the force beyond the boundary as

needed. As in the first Poisson example for the high-gradient force, we look at the simple sphere

shape in figure 5.1(a) with radius R = 0.8:

−µ∆u(x) +∇p(x) =

(
10s3(||x||2 −R2)2 − 8s3 ||x||2 (||x||2 −R2) + 10s

πs4(||x||2 −R2)4 + 2πs2(||x||2 −R2)2 + π

)
· (ω × x)

u(x) =
1

π

(
atan(s(R2 − ||x||2)) +

π

2

)
· (ω × x). (5.5)

This right-hand side exhibits interesting behavior on the boundary as well as away from the

boundary in the interior of our sphere. For example, looking at the z-component of the force,

near the boundary, we observe the high-gradient nature of the force in figure 5.22, for which

extension will be necessary. Away from the boundary, we also see adaptive refinement will be

necessary in some areas as evident in figure 5.23.

Figure 5.22: For sphere shape 5.1(a) of radius R = 0.8 and high gradient force in equation 5.5

with s = 10, we look at a particular slice of the force for z = 0 for the z-component of the force.

The force is symmetric across axes. Left and middle: Volume force; Right: Solution, uz .

202

Figure 5.23: For sphere shape 5.1(a) of radius R = 0.8 and high gradient force in equation 5.5

with s = 10, we look at a particular slice of the force for z = 0.375 for the z-component of the

force. The force is symmetric across axes. Left and middle: Volume force; Right: Solution, uz .

We compute the solution for four polynomial approximation values as before for k = 3, 4, 5, 6

using adaptive refinement with our extension. For all tests, we set εfmm = εrhs. Further, we

choose the surface discretization value, hs by using our observations from figure 5.20(a) and

figure 5.21(a). From those tests, we observe the expected relative error when the values on the

surface are smooth, so by choosing appropriate hs, we guarantee the error for full solver will

not be dominated by the boundary integral solver. The number of target points in the full solver

is 4498024 with the number of target points for the volume solver given by Ltotk3. Results are

shown in tables 5.17- 5.20 and figures 5.24- 5.25.

203

rhs Td hs Ns Lin Lcrv Lvsout Ltot Nsvol E∞ E2

scale s = 2

10−2 3 0.048 9600 42 224 128 394 3270 1.822e-03 7.991e-04

10−4 4 0.024 38400 598 776 464 1838 26818 3.228e-04 8.730e-05

10−6 5 0.012 38400 7126 3056 1872 12054 232826 2.764e-05 8.231e-06

10−8 6 0.012 149784 64288 12368 9728 86384 232826 1.466e-06 2.621e-07

scale s = 5

10−2 4 0.024 38400 266 752 410 1428 17268 1.682e-02 1.046e-03

10−4 5 0.012 149784 2940 3056 1872 7868 119804 4.435e-04 1.001e-04

10−6 6 0.012 149784 32718 12356 6630 51704 1044914 4.577e-05 1.028e-05

Table 5.17: High-gradient Stokes test case for polynomial-approximation of order k = 3. For

each specific level of precision in the right-hand side, εrhs, we set the FMM precision, εfmm =

εrhs (except for εrhs = 1, for which εfmm = 10−2) in order to guarantee FMM precision does

not dominate the error. Further, we choose the surface discretization, hs such that the error from

the boundary solver is more precise than εrhs as well (using previous results from boundary

and embedded boundary solver without volume force to choose proper hs for sphere shape).

For adaptively refined octree from specific εrhs, Lin denotes the number of leaves fully inside

of the sphere; Lcrv denotes the number of leaves overlapping leaves; Lout denotes number of

exterior leaves which are used in the computation of the free-space volume source; Ltot is the

total number of leaves used in the free-space evaluation. Lcrv+Lout are the number of leaves for

which extension may be necessary, whereas all interior leaves use their full k3 grid for computing

kth-order approximation. Nsvol is the total number of source points used to build the coefficients

for the force approximation.

204

rhs Td hs Ns Lin Lcrv Lvsout Ltot Nsvol E∞ E2

scale s = 2

10−2 3 0.048 9600 0 176 74 250 4118 4.316e-02 9.778e-04

10−4 4 0.024 38400 350 758 482 1590 47018 2.864e-04 4.233e-05

10−6 5 0.012 149784 2886 2984 1838 7708 278514 8.708e-06 3.189e-06

10−8 6 0.012 149784 22902 12098 9806 44086 1841032 2.667e-07 2.771e-07

scale s = 5

10−2 4 0.024 38400 128 524 206 858 24320 8.305e-03 1.423e-03

10−4 5 0.012 149784 1558 2864 1820 6242 187936 2.692e-04 1.089e-04

10−6 6 0.012 149784 16520 11780 6288 34588 1424490 1.681e-05 5.471e-06

10−8 7 0.012 149784 134068 43604 24498 198570 10006768 6.984e-07 4.017e-07

scale s = 10

10−2 4 0.024 38400 296 770 512 1578 44354 2.076e-02 2.905e-03

10−4 6 0.012 149784 4896 7538 4278 16712 538720 9.614e-04 1.058e-04

10−6 7 0.012 149784 46198 32612 19490 98300 3984232 2.200e-05 5.657e-06

Table 5.18: High-gradient Stokes test case for polynomial-approximation of order k = 4. Other

header details are available in table 5.17.

205

−8 −7 −6 −5 −4 −3 −2
−7

−6.5

−6

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

log(e
rhs

)

lo
g

(E
2
)

k=3 with Extension and Adap. Refin.

s=2

s=5
−8 −7 −6 −5 −4 −3 −2

−7

−6.5

−6

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

log(e
rhs

)

lo
g

(E
2
)

k=4 with Extension and Adap. Refin.

s=2

s=5

s=10

Figure 5.24: For Stokes equations adaptive solver with high-gradient extension. Left: Log-log

plot of relative error,E2 versus surface discretization, εrhs for shape figure 5.1(a) and polynomial

order of k = 3 for results in table 5.17. Right: Log-log plot of relative error, E2 versus surface

discretization, εrhs for shape figure 5.1(a) and polynomial order of k = 4 for results in table 5.18.

206

rhs Td hs Ns Lin Lcrv Lvsout Ltot Nsvol E∞ E2

scale s = 2

10−2 2 0.096 2400 0 56 8 64 2176 2.193e-03 1.446e-03

10−4 4 0.048 9600 56 236 200 492 18312 6.340e-04 2.836e-05

10−6 4 0.024 38400 640 776 512 1928 130376 1.935e-06 5.097e-07

10−8 5 0.012 149784 6160 3056 1872 11088 959136 1.736e-07 3.325e-08

10−10 6 0.012 149784 49210 12368 6988 68566 6899098 6.202e-08 6.172e-09

scale s = 5

10−2 3 0.048 9600 42 224 128 394 15508 4.663e-03 1.185e-03

10−4 5 0.012 149784 442 1166 1022 2630 125984 2.031e-04 2.352e-05

10−6 6 0.012 149784 4074 3680 2538 10292 725830 3.242e-06 1.302e-06

10−8 6 0.012 149784 35070 12368 6632 54070 5131598 2.577e-07 8.945e-08

scale s = 10

10−2 4 0.024 38400 266 758 446 1470 81390 1.599e-02 1.416e-03

10−4 5 0.012 149784 2604 3056 1872 7532 514636 1.523e-04 2.917e-05

10−6 6 0.012 149784 20454 12368 6632 39454 3304598 8.272e-06 3.026e-06

10−8 7 0.012 149784 152246 49472 24968 226686 22027750 7.554e-07 1.511e-07

scale s = 20

10−2 5 0.012 149784 1114 2762 1646 5522 310250 1.796e-02 2.695e-03

10−4 6 0.012 149784 11568 12338 6510 30416 2191756 3.486e-04 3.650e-05

10−6 7 0.012 149784 80124 49466 24932 154522 13011836 1.662e-05 3.096e-06

Table 5.19: High-gradient Stokes test case for polynomial-approximation of order k = 5. Other

header details are available in table 5.17.

207

rhs Td hs Ns Lin Lcrv Lvsout Ltot Nsvol E∞ E2

10−2 2 0.096 2400 0 56 8 64 3648 1.123e-02 5.921e-04

10−4 3 0.048 9600 56 224 128 408 29464 2.299e-04 1.699e-05

10−6 4 0.024 38400 388 776 512 1676 170456 8.989e-07 3.165e-07

10−8 5 0.012 149784 3364 3038 2552 8954 1048358 6.064e-07 3.147e-08

10−10 6 0.012 149784 16572 8354 6544 31470 4417126 7.647e-08 9.762e-09

scale s = 5

10−2 3 0.048 9600 42 224 128 394 26448 6.660e-03 1.371e-03

10−4 4 0.024 38400 380 770 512 1662 167494 6.840e-05 2.214e-05

10−6 5 0.012 149784 3360 3056 1872 8288 1050688 1.930e-06 5.830e-07

10−8 6 0.012 149784 20216 12368 6710 39294 5659846 2.486e-07 7.196e-08

scale s = 10

10−2 4 0.024 38400 176 722 308 1206 113050 1.910e-02 4.005e-03

10−4 5 0.012 149784 1810 3038 1874 6722 712448 1.881e-04 8.017e-05

10−6 6 0.012 149784 11988 12338 6714 31040 3878950 1.251e-05 1.746e-06

10−8 7 0.012 149784 70338 46214 23420 139972 19977592 1.365e-06 2.251e-07

scale s = 20

10−2 5 0.012 149784 854 2414 1484 4752 439588 2.753e-02 6.150e-03

10−4 6 0.012 149784 7812 12110 9296 29218 2950828 2.497e-04 9.229e-05

10−6 7 0.012 149784 50568 48128 23756 122452 15975700 3.046e-05 3.778e-06

Table 5.20: High-gradient Stokes test case for polynomial-approximation of order k = 6. Other

header details are available in table 5.17.

208

−10 −9 −8 −7 −6 −5 −4 −3 −2
−9

−8

−7

−6

−5

−4

−3

−2

log(e
rhs

)

lo
g

(E
2
)

k=5 with Extension and Adap. Refin.

s=2

s=5

s=10

s=20
−10 −9 −8 −7 −6 −5 −4 −3 −2

−9

−8

−7

−6

−5

−4

−3

−2

log(e
rhs

)

lo
g

(E
2
)

k=6 with Extension and Adap. Refin.

s=2

s=5

s=10

s=20

Figure 5.25: For Stokes equations adaptive solver with high-gradient extension. Left: Log-log

plot of relative error,E2 versus surface discretization, εrhs for shape figure 5.1(a) and polynomial

order of k = 5 for results in table 5.19. Right: Log-log plot of relative error, E2 versus surface

discretization, εrhs for shape figure 5.1(a) and polynomial order of k = 6 for results in table 5.20.

209

EBI Solver with Volume Force and Stokes Equations Example 2 To further test the EBI

solver for the Stokes equations, we use the non-trivial shape in figure 5.1(b) with a more complex

volume force at the boundaries (i.e., our polynomial approximation is not exact at interior nodes).

The divergence-free force is chosen to have decay and oscillating features. We choose eight

points, xi = (xi, yi, zi) = ±(1/4, 1/4, 1/4) for building the following test case:

−µ∆u(x) +∇p(x) =

8∑
i=1

(ω × (x− xi))
(

4q2e(q||x−xi||2)(∆(x− xi) + 3/2 + 2/q)
)

+
π

2

sin
(
π
4 ((z − zi)− (y − yi))

)
sin
(
π
4 ((x− xi)− (z − zi))

)
sin
(
π
4 ((y − yi)− (x− xi))

)
 ,

u(x) =

8∑
i=1

(ω × (x− xi))e
(q||x−xi||2) +

sin
(
π
4 ((z − zi)− (y − yi))

)
sin
(
π
4 ((x− xi)− (z − zi))

)
sin
(
π
4 ((y − yi)− (x− xi))

)
 .

We compile the results for this test in tables 5.21-5.23 and figure 5.26.

hs εrhs tvfmm tbis nits tfar tnear ttot E∞ E2

0.192 10−2 1.49e+01 9.22e+00 23 2.50e-01 1.14e+03 1.17e+03 2.72e+00 6.24e-02

0.096 10−4 1.67e+01 3.08e+01 21 5.06e+00 6.79e+02 7.32e+02 2.86e-03 5.43e-04

0.048 10−6 3.16e+01 1.25e+02 18 5.22e+01 6.44e+02 8.55e+02 3.93e-04 3.41e-05

0.024 10−8 1.89e+02 7.93e+02 16 2.05e+02 1.08e+03 2.28e+03 1.02e-05 5.54e-07

0.012 10−10 1.79e+03 5.45e+03 16 9.42e+02 1.96e+03 1.02e+04 3.44e-06 2.00e-07

Table 5.21: EBI solver for the Stokes equations with figure 5.1(b) and non-zero volume force.

Here, we set the volume target discretization to hvol = 0.0078125 with target point size Nvol =

2231752 for all tests.

210

hs Ns

0.0192 968

0.096 2896

0.048 11132

0.024 43632

0.012 174780

Table 5.22: For figure 5.1(b), given surface

discretization hs, Ns is the corresponding

number of surface points.

εrhs Td Nsrc

10−2 2 13824

10−4 3 65664

10−6 5 266112

10−8 5 1467072

10−10 6 9588672

Table 5.23: For Table 5.21, for Stokes Test

Example 2, for a given εrhs, the resulting

octree is of depth Td. We fix the polyno-

mial approximation to order k = 6, and the

definition of Nsrc follows the same as in

Table 5.23.

−2.5 −2 −1.5 −1 −0.5 0
−8

−7

−6

−5

−4

−3

−2

−1

0

1

log(hs)

lo
g

(E
rr

o
r)

Embedded Boundary Solver for Closed Pipe Joint

E
2
 error

E
inf

 error

Figure 5.26: Plots of E2 and E∞ errors for results from table 5.21.

211

CONCLUSION

5.1 Conclusions

We have presented an adaptive kernel-independent Fast Multipole Method-based volume integral

solver for linear non-oscillatory partials differential equations in three dimensions. Our fast

volume solver allows for highly nonuniform force distributions with free-space, periodic and

Dirichlet boundary conditions with easy extension to Neumann and more complex boundary

conditions in the cube. By incorporating this volume solver with a pre-existing boundary integral

solver, we have exhibited the ability to adaptively solve elliptic PDEs with Dirichlet boundary

conditions for a variety of complex geometries, where a smooth extension beyond the boundary

must be computed.

Future plans for the stand-along volume solver include adding inhomogeneous boundary

conditions as in (Ethridge and Greengard, 2001) as well as additional kernels for greater public

usability. We are also currently incorporating our periodic boundary conditions and volume

solver capabilities into the state-of-the-art kiFMM++ (Lashuk et al., 2009).

For the embedded boundary solver going forward, to obviate the need for interpolating from

grid to random locations using a cell-centered approach, we can instead choose a more appropri-

ate solution grid for (i.e., Chebyshev solution points). Currently the solution grid for the volume

solver is aligned with the input density locations. The free-space volume solver implementation

actually keeps these two grids separate (unless requested), and we are currently extending this

feature to the full boundary solver; among the added benefits is the increased accuracy in the final

interpolant to target values. Additionally, we are currently working on a hierarchical approach to

building the force extension as opposed to the current implementation. Such an approach gives

212

greater control over error estimates.

213

A
APPENDIX

A.1 Tree-Level Restriction

As discussed, in order to use our precomputed weights, it is necessary to have an octree which

is level-restricted such that all leaf box neighbors are within one level of each other in the tree

structure. Alternatively, it is possible to compute additional interactions for unbalanced trees

on-the-fly. We begin by discussing how we balance octrees to satisfy our tree-level restriction,

followed by a discussion of the alternative approach.

A.1.1 Sequential Tree Balancing

There are many significant approaches to balancing trees, most recently and significantly, (Sun-

dar et al., 2008) for parallel balancing. We describe a simple sequential method similar to that

described in (Ethridge, 2000) to take a tree which violates the tree level restrictions to one that

does not. To begin, all leaf boxes B which have neighbors, U where depth(U)− depth(B) ≥ 2

are labeled as primary violators. Any boxB, which is itself not a primary violator but is adjacent

to a primary violator that is deeper in the tree than itself, is labeled a secondary violator. We

then subdivide all primary and secondary violators once and then label all of the new children

of primary violators as possible violators (secondary violators are split exactly once as they are

buffered from any potential additional violations). If these possible violators are indeed adjacent

to boxes more than 1 level deep than themselves in the tree, we subdivide them, label their chil-

dren as possible violators, and continue iterating this procedure until no possible violators are

left. More specific details are outlined in Algorithm 6.

Figure A.1 shows an example quadtree in which our space has been discretized around a line

214

Algorithm 6 Tree Balance for Input T
STEP 1 - GENERATE VIOLATORS

for each leaf box B in postorder traversal of T do

for each box U ∈ LBU , if depth(U)− depth(B) ≥ 2 do

label B as a primary violator

end for

end for

for each leaf box B in postorder traversal of T , if B is not a primary violator do

for each box U ∈ LBU , if U is a primary violator and depth(U) > depth(B) do

label B as a secondary violator

end for

end for

STEP 2 - SUBDIVIDE VIOLATORS

for each leaf box B in postorder traversal of T , if B is a primary violator do

subdivide B and label its children as possible violators. Otherwise, if B is a secondary violator, subdivide it.

end for

STEP 3 - ITERATE ON DESCENDANTS OF VIOLATORS

for each box B in postorder traversal of T , if B is a leaf and B is a possible violator do

for each box U ∈ LBU , if depth(U)− depth(B) ≥ 2 do

subdivide B and label its children as possible violators

end for

end for

Repeat Step 3 until there are no boxes left labeled as possible violators

traveling through a unit box. We can see that there are many violations of boxes touching other

boxes more than one level away.

Step 1 of the tree-balancing algorithm identifies which boxes are primary violators and which

are secondary violators, the results of which can be seen in figure A.2.

As indicated, secondary violators are all split exactly once, and we split primary violators

once at first and keep track of their new children. The results of this can be seen in figure A.3. In

215

Figure A.1: A 2D example of a quadtree with tree-level violations.

Figure A.2: Identifying primary violator boxes on the left (blue) and secondary violators on the

right (red) for Step 1 of the tree-balancing algorithm.

216

the image on the left, we have marked all new children of primary violators as possible violators,

and in the image on the right, after we have checked to see if any of these children are violators,

we now mark the ones that are indeed violators as needing to be split.

Figure A.3: The image on the left shows the effect of splitting secondary violators and primary

violators once for Step 2 of the tree-balancing algorithm. The descendants of primary violators

are identified in purple on the left. On the right, we identify in blue which of these descendants

are themselves violators. Descendants of secondary violators need not be tracked as secondary

violators only need be subdivided once.

In figure A.4, we split all new violators and mark their children as possible violators on the

left. Of these, only one child is an actual violator of the tree-level restriction, so we mark it on

the right for subdivision.

The splitting of the final violator in figure A.4 leaves a tree which conforms to the tree-level

restriction, which can be seen in figure A.5.

The procedure in 3D is completely analogous to the example we have shown above in 2D,

the difference being of course that when we subdivide a box B, we have 8 new children. Ad-

217

Figure A.4: The image on the left shows the effect of splitting descendants of primary violators,

which are themselves violators for the first iteration of Step 3 of the tree-balancing algorithm.

Split boxes are indicated in purple, so we can see which of these descendant boxes are still

violators. The remaining violator is seen on the right in blue, and the second iteration of Step 4

results in the final tree in figure, which obeys the tree-level restriction.

218

Figure A.5: The level-restricted tree resulting from the full tree-balancing algorithm.

ditionally, instead of only considering violations on four edges and four corners in 2D, in 3D,

violations have to be considered across six faces, twelve edges, and eight corners. This last point

we consider is why we may want to consider a different approach.

A.1.2 Computing On-the-Fly Interactions

As indicated above, subdividing a box in 3D results in 8 new children instead of 4. To put this

in context, consider the largest violator on the bottom-right of the original 2D quadtree in figure

A.1. This violator resulted in 16 new boxes being generated. Consider an analogous situation

for a 3D octree, in which a single primary violator occupies 1/8th of our entire domain. If we

were to split this box once, we get 8 new children. Then, if we needed to split six of these boxes

once more, we get 48 new boxes. Now, if we had to split only four of these boxes once more,

we get 32 new boxes. The results of doing 3 iterations of splitting on a box B and some of its

children. The result in this case is that one box becomes 78. This may not seem like too many,

but consider the worst-case: if a single box B were to be completely subdivided just two times,

219

one box could result in up to 64 boxes, and if we had to do complete subdivision three times,

this would result in up to 512 boxes in 3D (for comparison, in 2D, worst-case would result in 16

boxes for two levels of subdivision and 64 boxes for three levels of subdivision).

To put the increased computation in further context, consider the cost for a boxB computing

the potential from a ring of boxes around its border which are 4 levels deeper in the tree. An

extreme scenario can be seen in figure A.6. Before refinement, if we were to have the interaction

matrices for computing the influence of boxes U ∈ LBU , which are 4 levels deeper than B in

the 2D case, we would have to compute 69k2Nk = 69k3(k+1)
2 near-interaction values. After

applying our tree-balancing algorithm in 2D (as seen in figure A.6 on the right), our original box

becomes 52 boxes, so the total number of precomputed near-field interactions would become
492k3(k+1)

2 , or an approximately 4-fold increase in the computations (not including the cost of

building the new polynomial coefficients for the new boxes).

Figure A.6: An extreme scenario for a box in 2D that needs 3 levels of tree-refinement on the

left, and the result of applying the sequential tree-balancing algorithm on the right.

The additional cost in 2D is not insignificant, but the case we have provided is quite extreme,

220

so this cost could be considered acceptable. In 3D, however, the additional computation would

be much larger. An analogous example to figure A.6 would be a 3D box B in which all of the

boxes U ∈ LBU are 4 levels deeper in our octree. In such a case, the number of precomputed

near-field interactions on B (again assuming the pre-built tables exist) would be 1737k3Nk =

1737k4(k+1)(k+2)
6 since there are 1736 such possible near neighbors, and the number of points in

xB,g is k3. For k = 4, this is already a nearly 200-fold increase in computations from 2D to 3D

due to the larger size of the grid, NK and the larger number of such neighbors. Now, if we do

the tree-balancing refinement for such a box B, B would be transformed into 484 boxes, and the

total number of computations would jump to ≈ 19360k4(k+1)(k+2)
6 . This is nearly a 12-fold jump

in the number of computations (again not including the cost of building the new polynomial

coefficients for the 484 new boxes, which is an additionally significant cost), and now more than

300 times the cost of the analogous situation in 2D.

The above situation is quite extreme and very unlikely, but it is meant to point out that the

additional cost of balancing beyond one level in 3D is significant. As such, we have developed a

method for computing interaction matrices on the fly. That is, if there exists some box U ∈ LBU
for box B with center cB such that depth(U) − depth(B) ≥ 2, we compute the interactions

Fj(x) such that for all x ∈ xU,g,

q(x) =
1

4π

∫
B

f(y)

|x− y|
dy

≈
Nk∑
j=1

γBj Fj(x),

where

Fj(x) =

∫
B
βj(y − cB)

1

|x− y|
dy.

221

Once these interactions have been computed, we store them to disk in case we need them

again later. Additionally, we compute the Fj to a level of p+1 precision. The only tricky detail is

in how these interaction matrices are stored and looked up such that they can be called upon later.

To solve for this, all files are stored in directories indicating the value of |depth(U)−depth(B)|

(this only works for scale-variant kernels; scale-invariant kernels are handled by creating an

additional level of subdirectories) as well whether U is a finer or coarser neighbor, and the value

of precision, p. Following this, we store a lookup variable, λ by first computing an index, iB =

cB−cU
rU

, where cU = (cU0 , c
U
1 , c

U
2) is the center of U and rU is its radius. Then, n = rB+rU

rU
+ 1

(this value is in fact equal to 2|depth(U)−depth(B)|+2). We then let λ = iBz n
2 + iBy n + iBx . It is

easy to verify that this value along with an indicator of U ’s depth relative to B is unique, and we

use these two values to store the interactions computed on the fly.

As a final note, the above process can also be used for computing interactions from the LBW

and LBX lists, where boxes in those lists also violate the tree-level restrictions of being more than

1 level deeper or shallower in the octree, respectively. Additionally, as discussed previously,

symmetries can be developed to further reduce the number of required precomputations.

Remark A.1. As indicated, computing interactions on the fly can be preferable in many of the

most extreme cases for octrees which violate tree-level restrictions. In all of our examples, we

perform complete refinement; however, the option of complete rebalancing versus computing

interactions on the fly is let as an option for the user in our implementation.

222

A.2 Full Tables for High-Gradient Poisson Examples

Here, we put the full tables for polynomial orders k = 3, 4, 5, 6 for uniform refinement and

adaptive refinement, comparing no extension with the use of the extension for the high-gradient

volume force in (5.1) for the Poisson equation. In figures 5.5- 5.6, we plot the E2 results versus

the depth of the uniform tree, comparing no extension to extension. For subsequent tables, we

look at the effects of adaptive refinement with use of the extension. The results of these tables

were plotted in section 5.0.6.

223

Td E∞ E2 E∞ E2 E∞ E2 E∞ E2

No Ext. Ext. No Ext. Ext.

s = 2 s = 5

2 7.70E-02 1.13E-02 3.25E-02 3.02E-03 3.67E-01 8.75E-02 1.30E-01 1.74E-02

3 1.91E-02 1.71E-03 5.33E-03 1.17E-03 1.32E-01 9.16E-03 2.68E-02 7.37E-03

4 3.36E-03 2.04E-04 1.94E-03 1.96E-04 3.31E-02 1.83E-03 8.43E-03 1.25E-03

5 3.25E-04 2.12E-05 6.09E-04 1.24E-05 4.16E-03 2.11E-04 1.92E-03 2.01E-04

6 2.22E-05 2.17E-06 2.73E-05 9.10E-07 2.96E-04 2.21E-05 7.75E-05 3.12E-05

s = 10 s = 20

2 8.57E-01 2.07E-01 3.38E-01 4.28E-02 1.53E+00 2.94E-01 7.22E-01 8.34E-02

3 3.33E-01 2.44E-02 9.42E-02 2.10E-02 5.66E-01 6.82E-02 2.67E-01 6.04E-02

4 1.29E-01 8.35E-03 4.71E-02 7.41E-03 3.25E-01 3.01E-02 1.47E-01 1.74E-02

5 2.55E-02 1.10E-03 8.32E-03 1.16E-03 1.15E-01 4.82E-03 3.51E-02 5.85E-03

6 2.15E-03 1.23E-04 2.82E-04 1.68E-04 1.39E-02 6.29E-04 6.20E-03 7.22E-04

s = 40 s = 80

2 2.24E+00 5.57E-01 1.97E+00 4.16E-01 1.15E+01 2.33E+00 7.81E+00 1.60E+00

3 1.47E+00 2.08E-01 6.70E-01 1.66E-01 5.00E+00 6.93E-01 1.55E+00 4.92E-01

4 7.87E-01 6.56E-02 3.51E-01 4.60E-02 1.21E+00 1.49E-01 1.53E-00 1.47E-01

5 3.20E-01 1.53E-02 9.73E-02 1.36E-02 5.09E-01 3.88E-02 3.64E-01 3.31E-02

6 6.61E-02 3.07E-03 2.46E-02 4.36E-03 2.00E-01 1.11E-02 1.56E-01 1.14E-02

Table A.1: For the uniform leaf counts from table 5.3 for use with no extension versus extension,

and a polynomial approximation of k = 3, we compare the errors for the high-gradient Poisson

test case for various values of s.

224

Td E∞ E2 E∞ E2 E∞ E2 E∞ E2

No Ext. Ext. No Ext. Ext.

s = 2 s = 5

2 4.70E-02 5.07E-03 3.80E-02 4.31E-03 1.85E-01 3.23E-02 1.48E-01 2.64E-02

3 6.35E-03 2.81E-04 5.76E-04 1.59E-04 5.59E-02 4.36E-03 1.33E-02 3.32E-03

4 4.94E-04 2.06E-05 1.85E-04 1.67E-05 9.36E-03 3.76E-04 1.50E-03 3.28E-04

5 2.09E-05 1.33E-06 7.12E-05 2.34E-06 5.78E-04 2.39E-05 3.15E-04 2.60E-05

6 4.83E-07 6.60E-08 4.97E-07 8.26E-08 1.38E-05 1.18E-06 9.66E-06 2.28E-06

s = 10 s = 20

2 3.38E-01 7.60E-02 4.67E-01 8.88E-02 8.06E-01 1.68E-01 1.21E+00 2.02E-01

3 2.32E-01 1.75E-02 2.20E-02 1.05E-02 5.85E-01 4.69E-02 5.41E-01 4.41E-02

4 6.83E-02 3.23E-03 4.62E-03 3.90E-03 2.42E-01 1.79E-02 2.69E-02 1.62E-02

5 6.23E-03 2.30E-04 2.16E-03 2.61E-04 4.87E-02 1.83E-03 2.09E-02 3.02E-03

6 2.00E-04 1.24E-05 1.32E-04 2.40E-05 2.51E-03 1.27E-04 4.33E-03 2.11E-04

s = 40 s = 80

2 2.03E+00 3.80E-01 2.17E+00 3.30E-01 9.74E+00 5.92E-01 3.96E+00 5.85E-01

3 1.72E+00 1.30E-01 5.82E-01 1.04E-01 3.48E+00 4.20E-01 2.46E+00 4.70E-01

4 5.20E-01 4.91E-02 2.56E-01 4.57E-02 1.94E+00 1.06E-01 1.07E+00 1.72E-01

5 1.77E-01 8.37E-03 5.12E-02 9.73E-03 3.98E-01 2.56E-02 3.53E-01 2.27E-02

6 1.84E-02 1.02E-03 7.77E-03 1.99E-03 9.28E-02 6.32E-03 6.70E-02 6.85E-03

Table A.2: For the uniform leaf counts from table 5.3 for use with no extension versus extension,

and a polynomial approximation of k = 4, we compare the errors for the high-gradient Poisson

test case for various values of s

225

Td E∞ E2 E∞ E2 E∞ E2 E∞ E2

No Ext. Ext. No Ext. Ext.

s = 2 s = 5

2 1.98E-02 1.55E-03 1.26E-02 1.04E-03 2.50E-01 2.49E-02 1.40E-01 1.21E-02

3 2.02E-03 7.81E-05 4.49E-04 5.07E-05 5.42E-02 2.03E-03 1.11E-02 1.20E-03

4 1.02E-04 2.79E-06 3.63E-05 1.68E-06 4.09E-03 1.02E-04 4.25E-04 4.93E-05

5 1.84E-06 6.44E-08 7.91E-07 8.39E-08 1.25E-04 3.40E-06 2.22E-05 2.80E-06

6 2.50E-08 3.54E-09 2.06E-07 5.90E-09 1.73E-06 7.83E-08 1.58E-06 8.04E-08

s = 10 s = 20

2 6.88E-01 7.63E-02 1.04E+00 4.31E-02 1.32E+00 1.09E-01 4.31E+00 1.80E-01

3 2.38E-01 1.71E-02 1.23E-01 1.56E-02 5.35E-01 6.61E-02 2.92E-01 3.43E-02

4 3.73E-02 1.14E-03 6.43E-03 7.47E-04 1.78E-01 8.65E-03 7.39E-02 8.56E-03

5 2.36E-03 5.60E-05 3.61E-04 2.71E-05 2.25E-02 7.46E-04 3.36E-03 5.90E-04

6 2.31E-05 1.48E-06 2.90E-05 1.87E-06 4.69E-04 2.74E-05 5.34E-04 1.94E-05

s = 40 s = 80

2 3.42E+00 4.94E-01 1.51E+01 7.28E-01 6.48E+00 1.63E+00 3.75E+01 1.98E+00

3 1.07E+00 1.56E-01 1.71E+00 8.23E-02 2.22E+00 4.09E-01 4.06E+00 4.83E-01

4 5.89E-01 3.66E-02 6.88E-01 2.38E-02 1.40E+00 1.11E-01 2.10E-01 2.95E-02

5 1.07E-01 5.60E-03 1.47E-02 4.39E-03 2.68E-01 1.87E-02 8.67E-02 7.20E-03

6 5.75E-03 4.40E-04 5.29E-03 4.03E-04 6.04E-02 3.59E-03 1.36E-02 1.62E-03

Table A.3: For the uniform leaf counts from table 5.3 for use with no extension versus extension,

and a polynomial approximation of k = 5, we compare the errors for the high-gradient Poisson

test case for various values of s

226

Td E∞ E2 E∞ E2 E∞ E2 E∞ E2

No Ext. Ext. No Ext. Ext.

s = 2 s = 5

2 1.65E-02 1.11E-03 2.09E-02 9.13E-04 1.17E-01 1.83E-02 1.16E-01 5.30E-03

3 9.31E-04 1.93E-05 2.97E-04 2.51E-05 1.98E-02 6.49E-04 5.70E-03 7.86E-04

4 1.41E-05 2.92E-07 2.03E-05 2.26E-07 1.31E-03 2.85E-05 5.07E-04 3.33E-05

5 1.71E-07 1.27E-08 2.48E-07 2.03E-08 1.62E-05 4.50E-07 5.25E-06 2.74E-07

6 2.58E-08 3.35E-09 8.29E-08 5.38E-09 1.52E-07 9.04E-09 3.20E-07 1.27E-08

s = 10 s = 20

2 5.31E-01 5.65E-02 1.24E+00 5.55E-02 1.26E+00 9.23E-02 5.13E+00 1.98E-01

3 1.11E-01 8.35E-03 2.31E-02 4.54E-03 4.39E-01 5.28E-02 4.50E-02 1.35E-02

4 2.38E-02 6.26E-04 3.89E-03 4.06E-04 1.49E-01 9.58E-03 1.02E-02 2.83E-03

5 5.55E-04 1.58E-05 9.63E-05 6.64E-06 1.05E-02 3.17E-04 1.89E-03 1.71E-04

6 7.22E-06 2.32E-07 5.24E-06 3.79E-07 1.08E-04 7.12E-06 1.31E-04 9.21E-06

s = 40 s = 80

2 1.99E+00 2.80E-01 1.47E+01 6.22E-01 8.52E+00 7.37E-01 3.50E+01 1.35E+00

3 1.11E+00 1.28E-01 3.12E-01 4.02E-02 2.24E+00 2.51E-01 1.14E+00 2.15E-01

4 7.28E-01 6.46E-02 1.87E-01 9.60E-03 2.30E+00 2.13E-01 2.83E-01 3.54E-02

5 6.87E-02 3.87E-03 1.68E-02 1.65E-03 2.63E-01 2.16E-02 7.56E-02 8.59E-03

6 4.09E-03 2.24E-04 1.85E-03 1.82E-04 8.87E-02 4.25E-03 3.44E-03 2.08E-03

Table A.4: For the uniform leaf counts from table 5.3 for use with no extension versus extension,

and a polynomial approximation of k = 6, we compare the errors for the high-gradient Poisson

test case for various values of s.

227

rhs Td hs Ns Lin Lcrv Lvsout Ltot Nsvol E∞ E2

scale s = 2

10−2 3 0.048 9600 56 224 128 408 3648 5.33E-02 1.17E-03

10−3 4 0.024 38400 56 512 296 864 6120 4.657E-03 7.403E-04

10−4 4 0.024 38400 472 776 464 1712 23416 3.346E-03 2.591E-04

10−5 5 0.012 149784 3728 2912 1920 8560 138488 2.806E-04 4.377E-05

10−6 5 0.012 149784 5488 3056 1872 10416 188600 1.883E-04 2.443E-05

10−7 6 0.012 149784 42000 12368 6632 61000 1295632 8.413E-06 1.499E-06

10−8 7 0.012 149784 62328 12368 7064 81760 1844536 2.710E-06 3.305E-07

scale s = 5

100 2 0.096 2400 0 56 8 64 480 1.300E-01 1.735E-02

10−1 3 0.048 9600 56 224 128 408 2136 2.680E-02 7.371E-03

10−2 4 0.024 38400 304 776 464 1544 18880 2.871E-02 2.026E-03

10−3 5 0.012 149784 544 2072 1496 4112 41392 7.180E-03 1.018E-03

10−4 5 0.012 149784 3024 3056 1872 7952 122072 3.087E-03 3.395E-04

10−5 6 0.012 149784 19392 11624 6632 37648 668296 3.247E-04 3.612E-05

10−6 6 0.012 149784 30968 12368 6632 49968 997768 6.750E-05 1.974E-05

10−7 7 0.012 149784 202728 49472 24872 277072 6117976 6.338E-06 2.598E-06

10−8 8 0.006 149784 341648 115352 82008 539008 10605000 9.230E-06 1.146E-06

scale s = 10

10−0 3 0.048 9600 0 200 32 232 2064 1.13E-01 2.76E-02

10−1 4 0.024 38400 184 728 200 1112 14320 9.02E-02 1.15E-02

10−2 5 0.012 149784 1032 2600 1608 5240 62480 4.06E-02 3.38E-03

10−3 5 0.012 149784 2352 3056 1872 7280 103928 1.05E-02 1.25E-03

10−4 6 0.012 149784 14784 12368 6632 33784 560800 2.51E-03 2.00E-04

10−5 7 0.012 149784 35688 42032 17840 95560 1492792 7.02E-04 6.41E-05

10−6 7 0.012 149784 148856 49472 24872 223200 4663432 6.14E-04 4.70E-05

10−7 8 0.006 599136 658880 197624 99960 956464 20418744 5.27E-04 4.75E-05

Table A.5: High-gradient adaptive Poisson tests for k = 3.

228

rhs Td hs Ns Lin Lcrv Lvsout Ltot Nsvol E∞ E2

scale s = 2

10−1 2 0.096 2400 0 56 8 64 1088 3.80E-02 4.31E-03

10−2 3 0.048 9600 0 200 32 232 5048 3.20E-03 9.01E-04

10−3 3 0.048 9600 56 224 128 408 8744 5.75E-04 1.58E-04

10−4 4 0.024 38400 152 704 512 1368 30992 6.91E-03 4.56E-05

10−5 4 0.024 38400 640 776 512 1928 66736 2.76E-04 2.06E-05

10−6 5 0.012 149784 2240 3056 1872 7168 239544 4.04E-05 6.94E-06

10−7 5 0.012 149784 5992 3056 1872 10920 479672 7.12E-05 2.41E-06

10−8 6 0.012 149784 20608 12368 6728 39704 1702504 2.24E-06 5.36E-07

10−9 6 0.012 149784 53144 12368 6728 72240 3784808 2.93E-07 7.88E-08

10−10 7 0.012 599136 173792 49472 25640 248904 12658752 5.14E-07 6.31E-08

scale s = 5

10−0 2 0.096 2400 0 56 8 64 1088 1.48E-01 2.64E-02

10−1 3 0.048 9600 0 200 32 232 5048 9.77E-02 8.11E-03

10−2 4 0.024 38400 152 632 248 1032 29888 1.66E-02 1.87E-03

10−3 4 0.024 38400 304 776 512 1592 45232 7.34E-03 4.84E-04

10−4 5 0.012 149784 1560 3008 1872 6440 192976 5.75E-04 9.21E-05

10−5 5 0.012 149784 3920 3056 1872 8848 347064 2.89E-04 2.84E-05

10−6 6 0.012 149784 17640 12368 6728 36736 1512552 1.46E-04 9.01E-06

10−7 6 0.012 149784 34160 12368 6728 53256 2569832 1.58E-04 4.55E-06

10−8 7 0.012 149784 135208 43808 20456 199472 10073072 8.78E-05 1.24E-06

10−9 7 0.012 149784 289824 49472 25640 364936 20084800 1.29E-05 6.26E-07

Table A.6: High-gradient adaptive tests for k = 4, continued in Table A.7.

229

rhs Td hs Ns Lin Lcrv Lvsout Ltot Nsvol E∞ E2

scale s = 10

10−0 3 0.048 9600 0 200 32 232 5048 2.13e+00 1.87E-02

10−1 4 0.024 38400 152 608 104 864 28760 6.35E-02 9.40E-03

10−2 4 0.024 38400 304 776 512 1592 45232 4.77E-02 3.31E-03

10−3 5 0.012 149784 2352 3056 1872 7280 246712 2.63E-03 2.93E-04

10−4 6 0.012 149784 5976 9656 5792 21424 672528 1.01E-03 1.19E-04

10−5 6 0.012 149784 18928 12368 6728 38024 1594984 6.72E-04 3.53E-05

10−6 7 0.012 149784 53216 37904 22136 113256 4585128 8.57E-05 1.41E-05

10−7 7 0.012 149784 160016 49472 25640 235128 11777088 3.20E-05 8.33E-06

scale s = 20

10−0 3 0.048 9600 0 224 128 352 5168 3.25E-01 5.90E-02

10−1 4 0.024 38400 304 776 368 1448 45232 1.11E-01 1.76E-02

10−2 5 0.012 149784 1848 3056 1872 6776 214456 3.31E-02 2.04E-03

10−3 6 0.012 149784 8832 12224 6632 27688 942408 5.51E-03 4.34E-04

10−4 7 0.012 149784 13968 14816 8576 37360 1352952 5.10E-03 2.90E-04

10−5 7 0.012 149784 73496 49472 25640 148608 6239808 4.44E-03 7.54E-05

10−6 8 0.006 599136 139616 80888 65000 285504 11532048 1.06E-03 5.81E-05

10−7 8 0.006 599136 613464 197624 101184 912272 45482424 3.76E-04 1.76E-05

Table A.7: High-gradient adaptive tests for k = 4, continued from Table A.6.

230

rhs Td hs Ns Lin Lcrv Lvsout Ltot Nsvol E∞ E2

scale s = 2

10−2 2 0.096 2400 0 56 8 64 2176 1.26E-02 1.04E-03

10−4 3 0.048 9600 56 224 128 408 17256 3.12E-04 5.07E-05

10−5 4 0.024 38400 304 776 512 1592 88376 1.54E-04 3.06E-05

10−6 4 0.024 38400 640 776 512 1928 130376 3.70E-05 1.83E-06

10−7 5 0.012 149784 3024 3056 1872 7952 567136 1.88E-06 1.48E-07

10−8 5 0.012 149784 6328 3056 1872 11256 980136 1.59E-07 6.00E-08

10−9 6 0.012 149784 17840 7472 6680 31992 2620536 3.11E-07 2.35E-08

10−10 6 0.012 149784 51016 12368 6632 70016 7124848 2.89E-08 4.98E-09

scale s = 5

10−0 2 0.096 2400 0 56 8 64 2176 1.40E-01 1.21E-02

10−1 3 0.048 9600 0 200 32 232 9976 5.71E-02 4.24E-03

10−2 3 0.048 9600 56 224 128 408 17256 6.01E-03 1.20E-03

10−3 4 0.024 38400 184 728 368 1280 67448 1.39E-03 2.25E-04

10−4 5 0.012 149784 496 1424 1208 3128 146480 8.09E-04 6.45E-05

10−5 5 0.012 149784 2856 3056 1872 7784 546136 4.99E-05 4.22E-06

10−6 6 0.012 149784 4256 3776 2528 10560 754416 7.34E-06 1.88E-06

10−7 6 0.012 149784 17752 12368 6632 36752 2966848 3.34E-06 1.47E-07

10−8 6 0.012 149784 36008 12368 6632 55008 5248848 2.17E-07 5.28E-08

10−9 7 0.012 149784 113776 47384 24968 186128 16989488 2.50E-07 3.13E-08

10−10 7 0.012 149784 277168 49472 24968 351608 37643000 2.51E-07 3.08E-08

Table A.8: High-gradient adaptive tests for k = 5, continued in Table A.9.

231

rhs Td hs Ns Lin Lcrv Lvsout Ltot Nsvol E∞ E2

scale s = 10

10−0 2 0.096 2400 0 56 8 64 2176 1.04e+00 4.31E-02

10−1 3 0.048 9600 56 224 128 408 17256 8.26E-02 1.57E-02

10−2 4 0.024 38400 304 776 512 1592 88376 6.37E-03 8.53E-04

10−3 5 0.012 149784 1224 2960 1776 5960 336064 1.30E-03 1.79E-04

10−4 5 0.012 149784 2856 3056 1872 7784 546136 4.35E-04 4.22E-05

10−5 6 0.012 149784 9744 12368 6632 28744 1965848 1.89E-04 8.01E-06

10−6 6 0.012 149784 21000 12368 6632 40000 3372848 2.51E-05 2.41E-06

10−7 7 0.012 149784 66344 44768 21752 132864 10971400 9.14E-06 9.45E-07

10−8 7 0.012 149784 163208 49472 24968 237648 23398000 5.23E-06 5.21E-07

10−9 8 0.006 599136 300472 167648 92520 560640 47542312 5.13E-06 4.77E-07

scale s = 20

10−0 3 0.048 9600 0 224 128 352 10264 4.80E-01 7.47E-02

10−1 4 0.024 38400 184 728 368 1280 67448 1.68e+00 1.64E-02

10−2 5 0.012 149784 1224 2960 1776 5960 336064 1.67E-02 2.30E-03

10−3 6 0.012 149784 5400 9608 4520 19528 1246856 3.36E-03 3.07E-04

10−4 6 0.012 149784 12096 12368 6632 31096 2259848 5.66E-04 3.62E-05

10−5 7 0.012 149784 35816 44384 22424 102624 7177672 1.46E-04 1.01E-05

10−6 7 0.012 149784 86768 49472 24968 161208 13843000 8.48E-05 5.84E-06

10−7 8 0.006 599136 175792 142712 60384 378888 30617704 2.59E-05 1.74E-06

scale s = 40

10−0 4 0.024 38400 152 680 104 936 58320 4.63e+00 9.25E-02

10−1 5 0.012 149784 864 2696 1560 5120 273688 7.06E-01 1.52E-02

10−2 6 0.012 149784 5520 11048 4592 21160 1342928 1.22E-02 1.78E-03

10−3 7 0.012 149784 10464 13232 7280 30976 2109632 4.73E-03 5.94E-04

10−4 7 0.012 149784 46712 49376 24824 120912 8824192 2.92E-03 1.08E-04

10−5 8 0.006 599136 81904 103424 45432 230760 16626424 2.87E-03 1.01E-04

Table A.9: High-gradient adaptive tests for k = 5, continued from Table A.8.

232

rhs Td hs Ns Lin Lcrv Lvsout Ltot Nsvol E∞ E2

scale s = 2

10−2 2 0.096 2400 0 56 8 64 3648 2.09E-02 9.13E-04

10−3 3 0.048 9600 0 224 128 352 17400 8.89E-04 5.46E-05

10−4 3 0.048 9600 56 224 128 408 29464 2.97E-04 2.51E-05

10−5 4 0.048 9600 184 728 368 1280 116168 5.38E-05 7.73E-06

10−6 4 0.024 38400 472 776 512 1760 188600 6.93E-06 4.57E-07

10−7 4 0.024 38400 640 776 512 1928 224888 2.07E-06 2.92E-07

10−8 5 0.012 149784 3920 3056 1872 8848 1171648 1.72E-07 2.82E-08

10−9 5 0.012 149784 6328 3056 1872 11256 1691776 1.53E-07 1.58E-08

10−10 6 0.012 149784 13696 10208 4544 28448 4010008 6.18E-08 8.99E-09

scale s = 5

10−1 2 0.096 2400 0 56 8 64 3648 1.16E-01 5.31E-03

10−2 3 0.048 9600 56 224 128 408 29464 5.69E-03 7.87E-04

10−3 4 0.024 38400 184 728 368 1280 116168 5.07E-03 1.82E-04

10−4 4 0.024 38400 472 776 512 1760 188600 1.07E-03 3.62E-05

10−5 5 0.012 149784 1728 2960 1776 6464 688600 1.50E-05 4.43E-06

10−6 5 0.012 149784 3528 3056 1872 8456 1086976 5.75E-06 6.91E-07

10−7 6 0.012 149784 5336 5840 3480 14656 1764304 5.21E-06 2.66E-07

10−8 6 0.012 149784 21168 12368 6728 40264 5865472 3.47E-07 2.70E-08

10−9 6 0.012 149784 36568 12368 6728 55664 9191872 3.39E-07 1.39E-08

scale s = 10

10−0 2 0.096 2400 0 56 8 64 3648 1.24e+00 5.55E-02

10−1 3 0.048 9600 0 224 128 352 17400 2.93E-02 4.65E-03

10−2 4 0.024 38400 184 728 248 1160 115856 6.67E-03 8.74E-04

10−3 5 0.012 149784 640 2312 1352 4304 382952 5.09E-04 9.97E-05

10−4 5 0.012 149784 2016 3056 1872 6944 760384 2.15E-04 1.05E-05

10−5 6 0.012 149784 4296 7112 3848 15256 1644376 1.60E-05 6.11E-06

10−6 6 0.012 149784 12432 12368 6728 31528 3978496 6.96E-06 1.02E-06

10−7 6 0.012 149784 23352 12368 6728 42448 6337216 5.03E-06 5.75E-07

10−8 7 0.006 599136 81056 48584 24896 154536 22554984 1.08E-06 1.77E-07

Table A.10: High-gradient adaptive tests for k = 6, continued in Table A.11.

233

rhs Td hs Ns Lin Lcrv Lvsout Ltot Nsvol E∞ E2

scale s = 20

10−0 3 0.048 9600 0 200 32 232 16968 1.77e+01 1.39e+00

10−1 4 0.024 38400 152 704 248 1104 104008 3.94E-01 7.87E-03

10−2 5 0.012 149784 1104 2864 1584 5552 542584 1.34E-02 6.09E-04

10−3 5 0.012 149784 2352 3056 1872 7280 832960 2.48E-03 2.62E-04

10−4 6 0.012 149784 7968 12296 6344 26608 2998840 1.58E-04 2.99E-05

10−5 7 0.012 149784 13200 13568 7328 34096 4271872 2.13E-04 1.44E-05

10−6 7 0.012 149784 33080 41024 19712 93816 11434896 1.86E-04 3.21E-06

10−7 7 0.012 149784 97184 49472 25064 171720 26173416 4.05E-05 2.15E-06

10−8 8 0.012 149784 228768 167864 95688 492320 67200704 3.92E-05 2.01E-06

scale s = 40

10−0 3 0.024 38400 56 224 128 408 29464 3.12E-01 4.02E-02

10−1 5 0.012 149784 640 2168 1136 3944 378752 6.63E-02 8.78E-03

10−2 6 0.012 149784 3456 5720 2912 12088 1365880 2.03E-02 1.78E-03

10−3 6 0.012 149784 9744 12368 6728 28840 3397888 1.85E-03 2.23E-04

10−4 7 0.012 149784 34448 48488 20840 103776 12528624 7.85E-04 9.32E-05

10−5 7 0.012 149784 60560 49472 25064 135096 18262632 6.34E-04 4.76E-05

10−6 8 0.012 149784 174448 186488 90648 451584 57640040 5.87E-04 3.11E-05

scale s = 80

10−0 5 0.012 149784 272 824 344 1440 152896 6.70e+00 1.11E-01

10−1 6 0.012 149784 2256 3152 2400 7808 811456 1.78E-01 2.01E-02

10−2 7 0.012 149784 8472 12464 6776 27712 3125992 2.46E-02 2.88E-03

10−3 7 0.012 149784 33824 48272 20264 102360 12382056 1.59E-02 1.28E-03

10−4 8 0.006 599136 98752 154712 53832 307296 37845104 1.44E-02 6.22E-04

10−5 8 0.006 599136 216808 197624 100704 515136 67967096 7.70E-03 3.16E-04

Table A.11: High-gradient adaptive tests for k = 6, continued from Table A.10.

234

A.3 Derivation of Fundamental Solutions

For the different boundary value problems seen in potential theory, we want to be able to find

solutions which we can state explicitly. In the discussion of solutions, we will introduce the idea

of kernels, specifically of the form K(x,y) : D × D → < for some domain D. We say that

K is singular when it performs like r−2, r = |x − y| as x → y and weakly singular when K

looks like r−1. For example, we will see that the fundamental solution to the Laplace equation

in 3D, looks like G(x,y) = − 1
4πr , which is weakly singular. One must be careful when using

singular and weakly singular kernels to avoid “blow-up” issues when using them for solutions

when x→ y; that is r → 0 (this is further discussed in (Kress, 1989)).

Given some function f(x) : D → <, we define the following integral equations:

∫
D

K(x,y)φ(y)dy = f(x) (A.1)

φ(x) +

∫
D

K(x,y)φ(y)dy = f(x) (A.2)

Equation A.1 is known as the Fredholm integral equation of the first kind and equation A.2

is the Fredholm integral equation of the second kind (Kress, 1989).

We further introduce the notation of an integral operator, A:

Aφ =

∫
D

K(x,y)φ(y)dy

Rewrite equations A.1 and A.2 as

Aφ = f and

φ+Aφ = (I +A)φ = f.

235

This notation will be useful when discussing solutions to boundary value problems and the

construction of boundary integrals. We now discuss how we build the kernels, fundamental to

the solution of Laplace and Poisson equations.

A.3.1 Derivation of Laplace Fundamental Solution

We rewrite the Laplace equation in two dimensions in polar coordinates as

∆u =
∂2u

∂r2
+
∂u

r∂r
+

∂2u

r2∂θ2
= 0. (A.3)

Assume we are solving this equation on a circular plate of radius a with Dirichlet boundary

conditions, such that we have ∆u = 0 for 0 ≤ r < a and u(a, θ) = g(θ). Note that g is periodic

in the form g(θ) = g(θ + 2π). Using separation of variables, we can rewrite equation A.3 as

(
∂R

∂r2
+
∂R

r∂r

)
Θ +

R∂2Θ

r2∂θ2
,

u(r, θ) = R(r)Θ(θ).

Solving the equation as in (Guenther and Lee, 1988), we solve for Θ andR and superimpose

them and use the Fourier expansion of g to obtain

u(r, θ) =
α0

2
+
∞∑
n=1

{αn cosnθ + βn sinnθ}

αn =

2π∫
0

g(γ) cos(nγ)

π
dγ, βn =

2π∫
0

g(γ) sin(nγ)

π
dγ

Combine the above three equations to obtain the following formulation

u(r, θ) =

2π∫
0

g(γ)

π

{
1

2
+
∞∑
n=1

(r
a

)n
cos [n(γ − θ]

}
dγ.

236

This can be simplified into Poisson’s formula in 2D:

u(r, θ) =

2π∫
0

g(γ)

π

{
a2 − r2

a2 + r2 − 2ar cos γ − θ

}
dγ, |r| < a

In 3D, we can also formulate Poisson’s formula for a similar Laplace problem:

∆u = 0 if |x| < a

u = g(x) if |x| = a

In this case, we are solving the Laplace equation on a sphere, instead of a disk. Where

|x| = a, we denote this “surface” as Γ. Then, for y ∈ Γ, Poisson’s formula takes the form:

u(x) =

∫
Γ

a2 − ||x||2

4πa ||x− y||3
g(y)dγ(y

It is actually more straightforward to construct the 3D Poisson’s formula using the fundamen-

tal solution to the Laplace equation in unbounded space. In the next sections, we will consider

the Laplace equation, ∆u = 0 on Ω ⊂ Rn where we have no actual physical boundaries, but

we stipulate that u → 0 as x → ∞. We will formulate a fundamental solution to this equation

using the dirac-delta function, resulting in a Green’s function. Much of this discussion follows

(Guenther and Lee, 1988; Hunter and Pullan, 2002).

A.3.2 Dirac-Delta Function

Define a sequence, δn(x) (Hunter and Pullan, 2002) as

δn(x) =

n
2 if |x| < 1

n

0 else.
n = 1, 2, ...

237

Consider this to be a sequence of force distributions where, for each δn,
∞∫
−∞

dn(x)dx = 1

is the total force over all x. As n grows, the maximum total force grows while the total force

remains constant at 1. The dirac-delta function is defined as the limit of this sequence:

δ(x) = lim
n→∞

δnx

That is, in theory:

δ(x) =

 ∞ if x = 0

0 if x 6= 0.

On its own, this is not useful, but for any h(x) ∈ C1,

∞∫
−∞

δ(a− x)h(x)dx = h(a), a ∈ R.

Another way to define the dirac-delta function is to use the Heaviside function:

H(b− t) =

 0 if b < t

1 else.

The dirac-delta function is the slope of the Heaviside function, or δ(a − x) = H ′(a − t)

(Hunter and Pullan, 2002). Define the higher-dimensional dirac-delta functions in d dimensions

as

δ(a− x) =
d∏
i=0

δ(ai − xi)

Green’s Functions

In two dimensions, Φ is a fundamental solution to the Laplace equation if Φ satisfies ∆Φ +

δ(a − x, b − y) = 0 where δ is the Dirac-Delta function as described above, and there is a

238

singularity at (a, b) (Guenther and Lee, 1988; Kress, 1989). In open-space, Φ will be symmetric

about the singularity, so change to polar coordinates where r is the distance of any point from

the singularity. Therefore, the Laplace equation becomes (Hunter and Pullan, 2002):

∆Φ =
∂

r∂r

(
r
∂Φ

∂r

)
+
∂2Φ

r2∂θ

Looking at r > 0, and the fact that symmetry implies ∂2Φ
∂θ = 0,

∂

r∂r

(
r
∂Φ

∂r

)
= 0.

This is a 1D differential equation which can easily be integrated to find the solution

Φ = C ln r + E where C and E are constants ∈ R (A.4)

For any domain, Ω̂ ⊂ Ω such that (a, b) ∈ Ω̂, using the properties of the last subsection,∫̂
Ω

∆Φdx =
∫̂
Ω

δdx = −1. Further, assume Ω̂ represents a circular disk of radius rmax > 0 as

can be seen in figure A.7.

Using the divergence theorem,

∫
Ω̂

∆ΦdA =

∫
∂Ω̂

∂Φ

∂n
ds

⇒ −1 =

∫
∂Ω̂

∂Φ

∂r
ds

⇒ −1 = 2πC using equation A.4

⇒ C = − 1

2π

Using C = − 1
2π , set E = 0 and arrive at the fundamental solution to the Laplace equation:

239

①

②

✡

❅✡

✭❛❀ ❜✮

r♠�✁

Figure A.7: Ω̂ ⊂ Ω represents a circular disk with center at the point of singularity, (a, b) and

radius of rmax.

Φ = − 1

2π
ln r (A.5)

Equation A.5 is appropriately often referred to as the Green’s or fundamental solution to the

Laplace equation. In 3D, rewrite the Laplace equation in spherical coordinates as:

∆Φ =
1

r2

∂

∂r

(
r2∂Φ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂Φ

∂θ

)
+

1

r2 sin θ2

∂2Φ

∂Φ2
.

A similar approach results in the fundamental solution in 3D:

Φ = − 1

4πr
(A.6)

Together, equations A.5 and A.6 represent the fundamental solutions to the Laplace equation

in two and three dimensions, respectively. In fact, these equations, in electrostatics, simply

represent the potential at some point as a result of a unit charge at another point. Hence, if

−∆u = f , then we can solve for u as:

240

u(x) =

∫
G(x,x′)f(x′)dx′ (A.7)

G(x,x′) is the Green’s function in 2D and 3D. The solution u can be seen in electrostatics

as the potential due to some charge distribution, described by f (Chorin and Marsden, 1993).

Additionally, note that the Green’s functions are symmetric, i.e., G(x,x′) = G(x′,x).

A.3.3 Derivation of Stokes Fundamental Solution

The following is based on notes from (Ying, 2004). Given a point source at x0 of the form

f(x0)δ(x), we seek a solution u(x) for the Stokes equations,

−µ∆u +∇p = δxf

∇ · u = 0

Applying the fact that in 3d, for r = |y−x| (or r = (rx, ry, rz) = |y−x—), φ = 1
4πr is the

fundamental solution to the Laplace equation, so if we take the divergence of the first equation

and use our divergence condition on u, we obtain:

−µ∇ ·∆u +∇ · ∇p = ∇ · (δxf)
∂2(∇ · u)

∂x2
+
∂2(∇ · u)

∂y2
+
∂2(∇ · u)

∂z2
+ ∆p = ∇ · (−∆φf)

∆p = ∆(−∇φ · f)

p = −∇φ · f

Using this result, and plugging back into the Stokes equations:

241

−µ∆u +∇(−∇φ · f) = 2Aδxf

µ∆u = ∆φ · f − (∇⊗∇)φf

µ∆u = (∆I −∇⊗∇)φf

u =
∆−1(∆I −∇⊗∇)φf

µ

=
(∆I −∇⊗∇)(∆−1φ)f

µ

We can easily check that since ∆
(
r

8π

)
= 1

4πr , then ∆−1φ = r
8π . Plugging this back in, we

can find a fundamental solution for u as:

u =
1

8πµ
((∆r)I − (∇⊗∇)r) f

=
1

8πµ

((
∂

∂x

(
∂r

∂x

)
+

∂

∂y

(
∂r

∂y

)
+

∂

∂z

(
∂r

∂z

))
I − (∇⊗∇)r

)
f

=
1

8πµ

((
∂

∂x

x

r
+

∂

∂y

y

r
+

∂

∂z

z

r

)
I − (∇⊗∇)r

)
f

=
1

8πµ

((
3

r
− x2 + y2 + z2

r3

)
I − (∇⊗∇)r

)
f

=
1

8πµ

(
2

r
I −

[
∂

∂xi

∂

∂xj

]
r

)
f , i,j = 1...3

=
1

8πµ

(
1

r
I +

r⊗ r

r3

)
f

We call the above the fundamental solution, Ku
s , to the velocity component of the Stokes

equations due to a point force. For a distributed body force, F(x), for which F→ 0 as x→∞,

we construct the volume integral for the solution at all points x as:

u(x) =

∫
Ku
s (x− y)F(y)dy

242

In order to recover the pressure term of the Stokes equations, we simply recall that p =

−∇φ · f , allowing us to construct a fundamental solution, Kp
s for the pressure component of the

Stokes equations:

Kp
s = (−∇φ) · f

=
1

4πr3
[rx, ry, rz]

T · f

=
r · f
4πr3

Hence, for our distributed body force F(x) which decays to zero at infinity, we recover the

pressure for the Stokes equations as:

p(x) =

∫
Kp
s (x− y)F(y)dy

We turn to discussing more of the necessary theorems of potential theory which provide

theoretical background for the problems we address.

A.3.4 Properties of Harmonic Functions

Harmonic functions are twice-differentiable real functions, which are solutions to the Laplace

equation, and there are several important properties and theorems surrounding them, necessary

for uniqueness and existence of solutions to different boundary value problems. We discuss these

here, beginning with Green’s integral theorems and Green’s formula. Much of this discussion is

derived from (Kress, 1989).

Green’s Integral Theorems and Green’s Formula

We begin by stating two theorems from (Kress, 1989) which we be necessary to the formulation

of solutions to the boundary value problems of potential theory.

243

Theorem A.1. (Green’s 1st, 2nd and 3rd Theorems/Identities) For a bounded domain Ω with

boundary Γ and outward unit normal to the boundary, n and for all vectors Ψi ∈ C1(Ω̄),

Ψj ∈ C2(Ω̄), Ω̄ = Ω ∪ Γ, we have Green’s First Theorem:

∫
Ω

[Ψi∆Ψj + (∇Ψi) · (∇Ψj)] dx =

∫
Γ

Ψi
∂Ψj

∂n
ds

where ds is a segment of the boundary Γ. Stipulate Ψi,Ψj ∈ C2(Ω̄). Then Green’s Second

Theorem is

∫
Ω

[Ψi∆Ψj −Ψj∆Ψi] dx =

∫
Γ

[
Ψi
∂Ψj

∂n
−Ψj

∂Ψi

∂n

]
ds

Green’s Third Theorem is a corollary, following from above for a harmonic function, Ψj ∈

C2(Ω̄).

∫
Γ

∂Ψi

∂n
= 0

We prove the first theorem using the divergence theorem,

∫
Ω

∇ ·Adx =

∫
Γ

A · nds.

LetA = Ψi∇Ψj ∈ C1(Ω̄) such that∇·A = ∇Ψi ·∇Ψj+Ψi∆Ψj andA ·n = Ψi
∂Ψj
∂n . This

proves Green’s First Theorem. To prove Green’s Second Theorem, let B = Ψj∇Ψi ∈ C1(Ω̄).

Computing
∫
Ω

(∇ ·A−∇ ·B) dx =
∫
Γ

(A · n−B · n) ds proves Green’s Second Theorem. For

Green’s Third Theorem, choose Ψi = 1 ∈ C1(Ω̄) and let Ψj ∈ C2(Ω̄) be a harmonic function

and apply these to Green’s First Theorem, thus proving Green’s Third Theorem.

From Green’s Theorems follows Green’s formula. Let u ∈ C2(Ω̄) as above where u is

harmonic in Ω. Then,

244

u(x) =

∫
Γ

{un(y)G(x,y)− u(y)Gn(x,y)} dγ(y), x ∈ Ω (A.8)

In equation A.8, let un = ∂u
∂n and similarly for Gn, where G represents the fundamental

solution kernel or Green’s function in 2D or 3D. G is referred to as a single-layer kernel while

Gn is a double-layer kernel. Green’s formula says harmonic functions can be represented as a

convolution with a single-layer kernel, double-layer kernel, or combination of both. A potential,

u derived from a single-layer kernel is referred to as a single-layer potential and similarly for a

double-layer kernel. We look at these potentials in more depth once we introduce the boundary

value problems in the next section. For a proof of Green’s formula, we refer to (Kress, 1989).

For a function, u ∈ C2(Ω) ∩ C1(Ω̄), where u is not harmonic, it can be shown (Guenther

and Lee, 1988) that u is a combination of single-layer, double-layer and volume potentials:

u(x) =

∫
Γ

{un(y)G(x,y)− u(y)Gn(x,y)} dγ(y)−
∫
Ω

G(x,y)∆udγ(y) (A.9)

If we force u to be harmonic, then equation A.9 becomes equation A.8, and if we remove the

boundaries, and make the problem unbounded, then equation A.9 becomes the volume integral

for the Poisson equation in open space (u→ 0 as x→∞).

Green’s Theorems and Green’s formula have several consequences in terms of analysis, which

are necessary for understanding the existence and uniqueness for the boundary value problems

we will present in the next section.

Mean-Value Theorem and Max-Min Principle

One of the first consequences of Green’s formula is the fact that harmonic functions are also

analytic functions (Ahlfors, 1979; Kress, 1989). For such functions, we can establish a Mean-

Value Theorem. If we solve for a harmonic function on a disk or a ball, then the potential at the

245

center of the domain will be the mean value over its domain and over its boundary.

Theorem A.2. Let u be a harmonic function in the domain Ωρ = {x ∈ Rm| ||x|| < ρ}, centered

at the origin with boundary Γρ. If u is continuous in the closure, Ω̄ρ, then in 2D and 3D, we

have the following respective mean value results:

u(x) =
1

πρ2

∫
Ω̄ρ

u(yd(y) =
1

2πρ

∫
Γρ

u(ydγ(y)

u(x) =
3

4πρ3

∫
Ω̄ρ

u(yd(y) =
1

4πρ2

∫
Γρ

u(ydγ(y)

The Mean-Value Theorem (MVT) for the boundary result can be achieved from Green’s

Third Theorem and Green’s Formula. For the domain result it is a consequence of integration

(Guenther and Lee, 1988; Kress, 1989). We state the Maximum-Minimum Principle for a general

function, u ∈ c2(Ω) ∩ C1(Ω̄).

Theorem A.3. If Ω is bounded with boundary Γ, u ∈ C2(Ω) ∩ C1(Ω̄), one of three results is

possible.

1. If ∆u ≥ 0, u(x) ≤ maxyu(y), x ∈ Ω, y ∈ Γ.

2. If ∆u ≤ 0, u(x) ≥ minyu(y), x ∈ Ω, y ∈ Γ.

3. If ∆u = 0, minyu(y) ≥ u(x) ≤ maxyu(y), x ∈ Ω, y ∈ Γ.

For existence and uniqueness properties of boundary value problems, the Maximum-Minimum

Principle will be necessary, and we leave the proof to (Guenther and Lee, 1988; Kress, 1989),

based largely on the Mean-Value Theorem. In particular, for a harmonic function u with domain

Ω and boundary Γ, the Maximum-Minimum Principle implies that if u attains its maximum or

minimum value in its domain, u is constant over its domain. Further, if u is continuous on Ω̄,

the maximum and minimum values must be reached on Γ.

246

For functions satisfying the Laplace equation, the Maximum-Minimum Principle is sensible

for the following reasons. As stated earlier, the Laplace equation models the steady-state tem-

perature of a body; hence, there are no sources or sinks in the internal domain, since otherwise,

the temperature distribution would not be steady. Therefore, the extreme values must be on the

boundaries, or the values are constant throughout.

A.3.5 Boundary Value Problems and Surface Potentials

We have introduced some of the theory surrounding integral equations when discussing funda-

mental solutions. We look at different boundary value formulations for the Poisson and Laplace

equations and different surface potentials for bounded domains.

Boundary Value Problems and Uniqueness

As discussed, solutions to the Laplace equation in open space are harmonic and have funda-

mental solutions, G(x,y) in equations A.5 and A.6 for 2D and 3D respectively. Assume now

we have a bounded domain Ω ⊂ R3 with a sufficiently smooth boundary Γ. Let Ω̄ = Ω ∪ Γ

and Ωc = R3\Ω̄. Further, let n be the normal at Γ such that ∂
∂n indicates differentiation in the

direction of the normal. We are concerned with boundary value problems, and we formalize the

four types for integral equations and their notation.

Interior Dirichlet Problem:

Find u ∈ Ω ∩ Γ where u = g on Γ, or u|Γ = g, g ∈ C(Ω).

Interior Neumann Problem:

Find u ∈ Ω ∩ Γ where un = g on Γ, or ∂u
∂n |Γ = g, g ∈ C(Ω).

Exterior Dirichlet Problem:

247

Find u ∈ Ωc ∩ Γ where u = g on Γ, or u|Γ = g, g ∈ C(Ωc).

Exterior Neumann Problem:

Find u ∈ Ωc ∩ Γ where un = g on Γ, or ∂u
∂n |Γ = g, g ∈ C(Ωc).

We present theorems for uniqueness properties of these boundary value problems.

Theorem A.4. There exists at most one solution to the interior Dirichlet, exterior Dirichlet and

exterior Neumann problems. Multiple solutions to the interior Neumann problem exist, but differ

at most by a constant.

The proofs of these uniqueness properties are a result of the Maximum-Minimum Principle

(Kress, 1989).

Surface Potentials and Existence of Boundary Value Problem Solutions

Away from the boundary, evaluating equation A.8 presents few problems. However, for a point,

x→ Γ, problems arise. Several theorems concerning potentials at surfaces tell us how to proceed

(Kress, 1989), and we discuss them here from (Kress, 1989).

Theorem A.5. If Γ is twice-differentiable and the density function φ is continuous there, the

single-layer potential u is continuous such that on Γ

u(x) =

∫
Γ

u(y)G(x,y)dγ(y), x ∈ Γ

∂u±
∂n

(x) = ∓φ(x)

2
+

∫
Γ

φ(y)Gn(x,y)dγ(y), x ∈ Γ

where ∂u±
∂n is the limit as we approach Γ from outside (+) or inside (-) our domain Ω.

Additionally, for a double-layer potential, v, we have away from Γ and near Γ

248

v(x) =

∫
Γ

v(y)Gn(x,y)dγ(y), x ∈ Ω\Γ,

v ± (x) = ±φ(x)

2
+

∫
Γ

φ(y)Gn(x,y)dγ(y), x ∈ Γ

As we take the limit from both side of Γ, indicate potential jump as [[v]] such that it is the limit

in the potential taken from both sides. Hence, we can see that [[v(x)n]]→
[
φ(x)

2 −
(
−φ(x)

2

)]
=

φ(x), x ∈ Γ.

Finally, we have the relationship:

[[vn]] (x)→ 0,x ∈ Γ

This theorem is the basis for the jump relations necessary for constructing smooth solutions,

especially numerically. The proof details are available in the literature such as (Kellogg, 1967).

Finally, we comment on the existence of solutions to the various boundary value problems

by using theorems from (Kress, 1989). The proofs are left to (Kellogg, 1967; Kress, 1989),

using the same notation for density φ, domains Ω, Ωc and boundary Γ. For each boundary value

problem, we give the solution type and the form of the integral equation for φ.

Theorem A.6. The following double-layer potential is a solution to the interior Dirichlet prob-

lem

u(x) =

∫
Γ

φ(y)Gn(x,y)dγ(y), x ∈ Ω

−2g(x) = φ(x)− 2

∫
Γ

φ(y)Gn(x,y)dγ(y), x ∈ Γ.

The following modified double-layer potential is a solution to the exterior Dirichlet problem

249

u(x) =

∫
Γ

{
φ(y)Gn(x,y) +

1

rd−2

}
dγ(y), x ∈ Ωc ⊂ Rd, d = 2, 3

2g(x) = φ(x) + 2

∫
Γ

{
φ(y)Gn(x,y) +

1

rd−2

}
dγ(y), x ∈ Γ ⊂ Rd, d = 2, 3.

Solutions to the interior and exterior Dirichlet problems are unique.

The following single-layer potential is a solution to the interior Neumann problem

u(x) =

∫
Γ

φ(y)G(x,y)dγ(y), x ∈ Ω

2g(x) = φ(x) + 2

∫
Γ

φ(y)Gn(x,y)dγ(y), x ∈ Γ

The solution is unique when

∫
Γ

g(y)dγ(y) = 0.

The following single-layer potential is a solution to the exterior Neumann problem

u(x) =

∫
Γ

φ(y)G(x,y)dγ(y), x ∈ Ωc

−2g(x) = φ(x)− 2

∫
Γ

φ(y)Gn(x,y)dγ(y), x ∈ Γ,

where inR2

∫
Γ

φ(y)dγ(y) = 0.

Further, the solution is unique when

250

∫
Γ

g(y)dγ(y) = 0.

For all four boundary value problem types, we are presented with either a general Fredholm

integral equation of the first kind Aφ = g or second kind (I +A)φ = g. As would be expected,

approximating solutions to these integral equations is of major concern. We will briefly discuss

several approaches to solving integral equations of these sorts.

A.3.6 Solving Integral Equations

When discretizing an integral equation, like the ones seen in the last section for the Fredholm

equations, there are two main methods for discretizing the integral equation. The first method is

known as a quadrature method or Nyström method. The second type is a projection method such

as the collocation method and Galerkin method. We begin by discussing quadrature (Nyström)

methods and then move onto projection methods. There are many references available on the

theory of integral equations including (Mikhlin, 1964; Kress, 1989; Hackbusch, 1995).

For smooth 2D problems, the Nyström method is straightforward. For piecewise smooth 2D

problems and 3D problems in general, the picture becomes more complicated and we discuss

numerical considerations when using the Galerkin method. In Chapter 3, we discuss a current

method for 3D smooth problems using the Nyström methods.

Nyström Method

The idea of numerical quadrature is commonly seen when approximating integrals over some

domain, D (⊂ Rd, d = 1, 2, 3) which include a weight function w(x) and a function f(x). For

example, consider the integral

251

∫
D

w(x)g(x)dx

We can do a discrete approximation of this integral by a quadrature method of index n using

quadrature points x1, x2, ..., xn and quadrature weights α1, α2, ..., αn of the form:

n∑
j=1

αjg(xj)

This rule dictates that the value of g at discrete points xj is known, or we are able to somehow

obtain appropriate approximations to g at these points. A basic example seen in most introduc-

tory texts is a trapezoidal rule approximation to the integral of a function g(x), x ∈ R over some

domain [a, b] ∈ R (i.e., g(x) = sinx over [0, π]). If we are trying to approximate this function,

assuming that g is smooth, we could do so by discretizing [a, b] into n discrete equidistant points

where xj+1 − xj = h and letting our weights αj = h at interior points and α0 = h
2 at x0 = a

and αn+1 = h
2 at xn+1 = b. Then our approximation would look like:

b∫
a

g(x)dx ≈
n∑
j=0

1

2
[g(xj) + g(xj+1)]

=
h

2
g(x0) + hg(x1) + hg(x2) + ...+ hg(xn−1) + hg(xn) +

h

2
g(xn+1)

If g has many zeros over [a, b] or periods of high oscillation, equally spaced discretization

points may lead to a poor solution, or we may need n to be so large, that it is preferable to choose

different quadrature points, spaced unevenly. Other rules exist, incorporating different weights

and quadrature points, such as Simpson’s rules, based on Newton-Cotes formulas for numerical

integration (Iserles, 1996; Trefethen and Bau, 1997).

For an integral operator of the first kind, Kφ(x) =
∫
D

K(x,y)φ(y)dy, x ∈ D, Nyström’s

method consists of approximating this as follows:

252

Kφ(xi) ≈
n∑

j=1,j 6=i
αjK(x,xj)φ(xj) (A.10)

Equation A.10 approximates the Fredholm integral equation of the first kind. The integral

equation of the second kind can be approximated by

(I +K)φ(xi) ≈ φ(xi) +

n∑
j=1

αjK(x,xj)φ(xj) (A.11)

The trapezoidal rule can also be used for Nyström’s method in 2D, and there are many

quadrature rules available (Ying, 2004). These allow for building a system of linear equations,

solvable by a variety of methods. Since the resulting matrix can often be dense, fast methods

are preferable. For example, (Ying et al., 2004b) use a GMRES solver with a preconditioner,

described in (Greengard et al., 1996); GMRES and various other approach for solving such

systems are discussed in section A.5

Convergence results for Nyström’s are available in (Kress, 1999). For example, for a function

g ∈ C2(Ω), the trapezoidal rule for the numerical quadrature is O(h2) for equidistant discretiza-

tions of points. Similarly, Simpson’s rule has a convergence rate of O(h4). In general, let the

error in the quadrature from a trapezoidal rule be denoted as RT (g) for function g. If g is a

periodic function, then |RT (g)| = O(e−2n), or the result is an exponential decrease in error. In

general, for a function g ∈ Cm(Ω), which is 2π periodic, (Kress, 1999) provides the following

error estimate:

|RT (g)| ≤ C

nm

∣∣∣∣∣∣g(m)
∣∣∣∣∣∣
∞

= O(n−m).

For 3D, quadrature rules for the types of integral equations we are interested in can be quite

complicated, especially if higher-order is desired. Further, if dealing with surfaces which have

high curvature in areas, choosing appropriate quadrature points can be tricky to avoid not having

253

to use an excessive number of points, resulting in high numerical costs. Additional difficulties

occur when surfaces are no longer smooth and the function defined by the surface is not contin-

uously differentiable, as required by the above error estimates. Another available approach is to

use projection methods.

Projection Methods

The idea behind projection methods is to project the linear operators seen in integral equations

into subspaces. Since one will be performing numerical calculations on these projections, the

subspaces must be of finite dimension (Kress, 1989). To give a full definition, we first define

Banach spaces, which in turn, requires several other definitions. Further, if a sequence {ψn} ∈

X where X is a normed space (normed spaces are discussed further in the Appendix). We say

that {ψε} is a Cauchy sequence if it obeys the definition of sequence with a limit. A sequence is

Cauchy if

∀ε > 0,∃N such that ∀n,m ≥ N then ||ψn − ψm|| < ε.

If U ⊂ X , then if every Cauchy sequence in U converges to an element in U and U is

complete. If the normed space X is itself complete, then we say that it is also a Banach space. If

X and Y are two Banach spaces where the linear integral operator, K : X → Y , let Xn ⊂ X ,

Yn ⊂ Y be two finite dimensional subspaces of dimension n and let Pn be a projection operator

that projects Y → Yn and X → Xn for example.

For the integral equation Kφ = g, we approximate with the projected version of this equa-

tion,

PnKφn = Png.

For an integral equation of the second kind (I + K)φ = g, K : X → X , the projection

254

operators acts as Pn : X → Xn. The projection method approximates the integral equation with

a finite dimensional equation of the form:

(I + PnK)φn = Png.

Discussions of the convergence properties for projection methods are available in (Kress,

1989). The two main projection methods are the collocation methods and the Galerkin method.

The Galerkin method is discussed in detail for finite element methods in section A.4. For gen-

eral descriptions of collocation and Galerkin we refer to (Baker, 1977; Kress, 1989; Sloan, 1992;

Hackbusch, 1995; Atkinson, 1997). For further discussions in 3D, specifically for boundary ele-

ments, we will refer to (Brebbia et al., 1984; Hackbusch, 1995; Chen and Zhou, 1992; Wendland,

1985).

Collocation Method

For an integral equation of the first kind, Kφ = g, the collocation method consists of requir-

ing that the residual, r = Kφ− g vanishes at a set of collocation points, x1,x2, ...,xn such that

{xi} ∈ Xn by approximating the equation with an element φn ∈ Xn:

(Kφn)(xj) = g(xj), j = 1, ..., n.

We define the span of Xn as a set of n linearly independent vectors {µ1, ...µ2}. Then, we

define φn as a linear combination of these vectors, using real coefficients βj , j = 1, ...n,

φn =

n∑
j=1

βjµj .

Our integral equation becomes

255

n∑
k=1

βk(Kµk)(xj) = g(xj), j = 1, ..., n.

Therefore, we are trying to solve for the µj to build φn. One of the keys to success in this type

of method is in the choice of collocation points and appropriate coefficients. More information

is available in (Kress, 1989).

Finally, we state the collocation formulation for an integral equation of the second kind:

(I +K)φ = g:

n∑
k=1

βk {µk(xj) + (Kµk)(xj)} = g(xj), j = 1, ..., n.

Again, examples and numerical results are available in (Kress, 1989).

Galerkin Method

We discuss much of the Galerkin method in section A.4, so we refer there for general Galerkin

method development and discussion of Hilbert spaces and discuss how the Galerkin method is

applied here, in much the same way.

For the integral equation of the first kind, Kφ = g, we require that the residual, r = Kφ− g

is orthogonal to a finite dimensional space Ψn = span{ψ1, ...ψn}. We define for f, g ∈ Hn for

some finite dimensional Hilbert space of size n over some domain Ω:

(f, g) =

∫
Ω

fgdx for f, g ∈ Hn(Ω).

Solving the integral equation for a minimized residual is equivalent to solving the following

equation for φn,

256

(Kφn, ψ) = (g, ψ), ∀ψ ∈ Ψ.

The resulting linear system (again writing φj as a linear combination of linearly independent

vectors µj and coefficients βj) is

n∑
k=1

βk(Kµk, ψj) = (g, ψj), j = 1, ..., n.

For an integral equation of the second kind (I + K)ψ = g, the resulting system of linear

equations is

n∑
k=1

βk {(µk, ψj) + (Kµk, ψj)} = (g, ψj), j = 1, ..., n.

As discussed for finite elements in section A.4, appropriately choosing the evaluation points,

weights, and basis functions play a large role in the development of an accurate finite element

method. In fact, much of the research surrounding Galerkin methods involves designing appro-

priate bases as seen in (Baker, 1977; Brebbia et al., 1984; Wendland, 1985; Kress, 1989; Chen

and Zhou, 1992; Sloan, 1992; Hackbusch, 1995; Atkinson, 1997; Braess, 2001).

257

A.4 Review of Finite Elements

In section 1.1 and (Iserles, 1996), it is shown how to easily discretize an equation such as the

Poisson equation in a regular domain using finite difference techniques in multiple dimensions.

These schemes work best when we can discretize our domain in a regular way and easiest to

do when the domain is a simple shape (rectangular, circular, etc.). However, more complicated

domains (L-shaped domains, irregular geometries, etc.) cannot be so easily discretized. For this,

we begin by looking at finite elements. Finite element methods work well for more complicated

domains, but also work for regular domains. For these reasons, this method is quite popular in

general, and we will begin our discussion of the basic topics with a 1D problem. Much of the

discussion here is derived directly from (Iserles, 1996; Braess, 2001), condensed or expanded

where deemed necessary.

A.4.1 Finite Element Motivation in 1D

Consider the following 1D Poisson equation with Dirichlet boundary conditions:

−u′′(x) = f(x), 0 < x < L (A.12)

u(0) = u(L) = 0.

For piece-wise continuous real bounded functions, we introduce an inner-product, linear

space, V, and linear functional, F : V → R, as follows:

(v, u) =

∫ 1

0
v(x)u(x)dx, (A.13)

V = { v | v is continuous on [0, 1] , v′ piecewise continuous and bounded on [0, 1] , v(0) = v(1) = 0 },

F (v) =
(v′, v′)− (f, v)

2
.

258

We define two problems, a minimization problem and a variational problem, respectively,

∀v ∈ V , find u ∈ V | F (u) ≤ F (v) and (A.14)

∀v ∈ V , find u ∈ V | (u′, v′) = (f, v) (A.15)

The solution to equation A.12 is also a solution to equations A.14 and A.15. To see the

relationship between equations A.12 and A.15, first multiply equation A.12 by some function v ∈

V and integrate over (0, 1), resulting in the use of the inner-product formulation (equation A.13):

−(u′′, v) = (f, v). Integration by parts, using the boundary conditions shows that −(u′′, v) =

(u′, v′). Hence, if u solves equation A.12, then it solves equation A.15.

Now, assume that u is a solution to the variational problem, equation A.15. We arbitrarily

choose some v ∈ V and let w = v − u, w ∈ V such that

F (v) = F (u+ w)

=
1

2
(u′ + w′, u′ + w′)− (f, u+ w)

=
1

2
(u′, u′)− (f, u) + (u′, w′)− (f, w) +

1

2
(w′, w′)

=
1

2
(u′, u′)− (f, u) +

1

2
(w′, w′) since u solves equation A.15⇒ (u′, w′) = (f ′w)

≥ F (u) since (w′, w′) ≥ 0.

Hence, if u is a solution to the Poisson equation A.12, it is a solution to the variational

problem, A.15, which, in turn, implies that it is a solution to the minimization problem, equation

A.14. Similarly, we can show that if u solves the minimization problem, then it solves the

variational problem, and if it solves the variational problem, then it solves the Poisson equation.

The details of this are further explained in (Johnson, 1987).

259

Knowing that the Poisson equation problem is equivalent to the variational and minimization

problem, we will show how we explicitly build the set of functions in v. We seek to construct

Vh ⊂ V . As with the finite-difference methods, partition the interval [0, L]:

0 = x0 ≤ x1 ≤ x2 ≤ x3... ≤ xN−1 ≤ xN ≤ xN+1 = L.

Let hi = xi − xi−1 for 1 ≤ i ≤ N + 1 and h = maxi hi and define Vh as the set of all

functions which are linear on each subinterval, (xi−1, xi), continuous on [0, 1] and equal to zero

at x = 0 and x = 1. This is very similar to our previous definition for the set of functions, V ,

but now we are concerned about the subintervals, and how each function, v is linear there. An

example function from Vh can be seen in Figure A.8. Notice that in this figure, subintervals do

not have to be of equal length. That is hi and hj are not necessarily equal for i 6= j.

x

y = v(x)

✵ ✶①✐

Figure A.8: Example of the type of piece-wise continuous function, v ∈ Vh, which is linear on

each subinterval, (xi−1, xi). The y-axis represents the value of v(xi) at each point xi.

Since each function, v, is linear on each subinterval, we define variables αi = v(xi). To that

end, define the following basis functions, φj ∈ Vh:

260

φj(xi) =

 1 if i = j

0 if i 6= j.
i, j = 1, 2, ...N

Figure A.9 shows explicitly how the basis functions look over two subintervals. In general, φ

is referred to as the hat function. Additionally, since φi is linear over any subinterval, (xi−1, xi),

we can evaluate the derivative of φi, or φ′i = dφi
dx at some point x as

φ′i(x) =

1−0

xi−xi−1
= 1

hi
if xi−1 < x < xi

0−1
xi−xi+1

= 1
hi+1

if xi < x < xi+1.

x
✵ ✶①✐

♣❤�✐

✶

①✐✁✂ ①✐✰✂

Figure A.9: The basis function, φi, as defined.

Using these basis functions, we represent any function v ∈ Vh as a linear combination of the

values of αi = v(xi) at every point xi and the basis functions, φi for all i = 1, ..., N :

v(x) = ΣN
i=1αiφi(x), x ∈ [0, L].

The minimization problem in equation A.14 and the variational problem in equation A.15

can now be written respectively as

261

∀v ∈ Vh, find u ∈ Vh | F (u) ≤ F (v) and (A.16)

∀v ∈ Vh, find uh ∈ V | (u′, v′) = (f, v). (A.17)

Methods for solving the minimization problem A.16 are known as Ritz methods, and meth-

ods for solving the variational problem A.17 are known as Galerkin methods. Either approach

can be used to construct a finite element approximation to the Poisson equation A.12. In partic-

ular, if uh ∈ Vh is a solution to problem A.17, then uh(x) = ΣN
i=1αiφi(x) where αi = uh(xi),

then the Galerkin method implies that ΣN
i=1αi(φ

′
i, φ
′
j) = (f, φj) where j goes from 1...N . As

both methods are essentially equivalent, most literature refers simply to the Galerkin method,

typically the preferred finite element method.

Let bj = (f, φj), Ai,j = (φ′i, φ
′
j), and α = [α1α2....αN]T . We rewrite the variational

problem as a system of N linear equations in matrix-vector form Aα = b where the entries of

the matrix A are the Ai,j values. We note that Ai,j = 0 if xi and xj are more than one interval

away from each other; i.e., |i − j| > 1. Therefore, A is a tridiagonal matrix, where only the

entries in the main diagonal and one entry away are non-zero. Also, by the definition of our

inner-product, (φ′i, φi−1) = (φ′i−1, φi)⇒ Ai,i−1 = Ai−1,i. Evaluate the entries of A as follows:

Ai,i =

1∫
0

φ′iφ
′
idx =

xi+1∫
xi−1

φ′iφ
′
idx =

xi∫
xi−1

1

hi

1

hi
dx+

xi+1∫
xi

1

hi+1

1

hi+1
dx

=

xi∫
xi−1

1

h2
i

dx+

xi+1∫
xi

1

h2
i+1

dx

=
1

hi
+

1

hi+1
and

262

Ai,i−1 = Ai−1,i =

1∫
0

φ′iφ
′
i−1dx =

xi∫
xi−1

φ′iφ
′
i−1dx =

xi∫
xi−1

1

hi

1

hi
dx

=

xi∫
xi−1

1

h2
i

dx = − 1

hi
.

A is commonly referred to as the stiffness matrix, and it is symmetric and positive definite

(Ai,j = Aj,i and (v′, v′) ≥ 0). From Linear Algebra, we know that any positive-definite matrix

is invertible and not singular, so the system Aα = b has a unique solution.

If we were to partition our domain into equal pieces (i.e., hj = h = 1
N), then our matrix, A,

would have the same form as for finite-differences. Specifically, Aα = b has the form

1

h

2 −1

−1 2 −1

−1 2 −1

.

−1 2 −1

−1 2 −1

−1 2

α1

α2

α3

...

αN−3

αN−2

αN−1

=

b1

b2

b3
...

bN−3

bN−2

bN−1

One of the main differences between the finite-difference discretization and this one is that

the matrix A is multiplied by 1
h here as opposed to 1

h2 in the finite-difference case. This is

accounted for in the fact that the right-hand side in this finite element version is of the form

b = Σbi = Σ(f, φi). If we were to work this out, we would see that in fact, the formulation here

does agree with finite-difference approximations, where the Dirichlet boundary conditions are

g = 0 on ∂Ω. That is, bih = fi when averaged over the interval, (xi−1, xi+1). Hence, bi ≈ hfi.

Understanding the basic idea of variational or Galerkin finite element methods as well as the

263

idea of a minimization problem, we move on to look at how we can extend the idea into 2D.

A.4.2 Finite Elements in 2D

We wish to solve the following Poisson equation in 2D with Dirichlet boundary conditions set

to zero:

−∆u = f in Ω (A.18)

u = 0 on ∂Ω.

Define a new set of functions as in the previous section:

V2 = { v | v is continuous on Ω,
∂v

∂x
and

∂v

∂y
piecewise continuous and bounded on Ω, v = 0 on ∂Ω }.

Further, we modify our inner-product from before to be (v, w) =
∫
Ω

vwx. Using the Diver-

gence Theorem in two dimensions, we develop one of Green’s formulas (see (Johnson, 1987)

and section A.3 for further details). Let i represent a unit-vector in the x-direction and j be a

unit-vector in the y-direction. Applying the Divergence Theorem to the following vector in the

x-direction, (v ∂w∂x)i,∫
Ω

∇ ·
(
v
∂w

∂x

)
idx =

∫
Ω

(
∂v

∂x

∂w

∂x
+ v

∂2w

∂x2

)
dx =

∫
∂Ω

v
∂w

∂x
nxds.

Applying the Divergence Theorem to a similar vector in the y-direction,∫
Ω

∇ ·
(
v
∂w

∂y

)
jdx =

∫
Ω

(
∂v

∂y

∂w

∂y
+ v

∂2w

∂y2

)
dx =

∫
∂Ω

v
∂w

∂y
nyds.

Letting n = (nx, ny) represent the normal to ∂Ω at the point x = (x, y), add the above two

formulations:∫
Ω

(
∂v

∂x

∂w

∂x
+ v

∂2w

∂x2
+
∂v

∂y

∂w

∂y
+ v

∂2w

∂y2

)
dx =

∫
∂Ω

(
v
∂w

∂x
nx + v

∂w

∂y
ny

)
ds.

264

Rearranging the terms and using the facts that ∂w∂xnx + ∂w
∂y ny = ∂w

∂n and ∆w = ∂2w
∂x2 + ∂2w

∂y2 ⇒∫
Ω

(
∂v

∂x

∂w

∂x
+
∂v

∂y

∂w

∂y

)
dx =

∫
∂Ω

v
∂w

∂n
ds−

∫
Ω

v∆wdx.

Rearranging the left-hand-side of the above equation using the gradient operator,∇,∫
Ω

∇v · ∇wdx =

∫
∂Ω

v
∂w

∂n
ds−

∫
Ω

v∆wdx. (A.19)

Multiplying equation A.18 by any v ∈ V and integrating over our domain, Ω,

−
∫
Ω

∆uvdx =

∫
Ω

fvdx.

We can use equation A.19 and notice that by definition, v = 0 on ∂Ω. Define (f, v) =∫
Ω

fvdx and α(u, v) =
∫
Ω

∇v ·∇wdx. Thus, equation A.18 can be written in variational form as

A.20:

α(u, v) = (f, v). (A.20)

We can show, via a more complicated integration by parts, that if u satisfies equation A.18,

then it satisfies the variational problem A.20 and vice versa. Similarly, we define a minimization

problem which has the same solution as the original Poisson equation and variational problem

(A.18 and A.20, respectively). The details of this can be seen in (Johnson, 1987).

Construct a set Vh ⊂ V , similar to before, where Vh will be a set of functions which are linear

over some discretization of a domain, Ω. In order to discretize the domain, assume the boundary

∂Ω forms a polygonal shape (if it is a smooth curve, we can discretize the curve into segments).

Then, we triangulate Ω as described in (Johnson, 1987). Triangulation of a polygonal domain

constitutes a large research field, and examples of how polygons can be triangulated include

Delauney Triangulation, convex hull differencing, and Seidel’s algorithm (Tor and Middleditch,

265

1984; Seidel, 1991; Bloomenthal, 1994; Fournier and Montuno, 1984; Lischinski, 1994). We

will not discuss triangulation specifically, but imagine that we are able to triangulate some do-

main as in Figure A.10, showing how one can break a domain into a series of triangles, Ki,

based on discretization points, Nj . Both triangles and points are enumerated. Define h to be the

length of the longest side of all triangles and define Vh ⊂ V as the set of all function which are

continuous on Ω, linear on each triangle, K, and disappear on the boundary, ∂Ω.

❑✐

◆❥

Figure A.10: A domain triangulated into separated triangles, Ki for i = 1, ...,m (m = num-

ber of triangles in the domain). Each node is labeled Nj for j = 1, ..., n, corresponding to a

discretization point for our domain.

To further represent a function v ∈ Vh, we introduce a basis function (or hat function),

similar to the one we defined for the 1D problem but now define the basis functions of the nodes,

Ni:

266

φj(Ni) =

 1 if i = j

0 if i 6= j.
i, j = 1, 2, ...n

For example, figure A.11 shows how each basis function, φj is supported only on triangles

which have node Nj as one of its vertices.

◆❥

✣❥

Figure A.11: Example basis function, φj , supported over triangles Ki, which have node, Nj , as

a vertex.

We can write any function v ∈ Vh as v(x) = Σn
i=1βiφi where βi = v(Ni). Further, we can

solve for the Poisson equation A.18 by developing a finite element formulation of the Galerkin

problem:

∀v ∈ V , find uh ∈ V | α(uh, v) = (f, v). (A.21)

We can build a system of equations of the form: Aζ = b where A is the stiffness matrix

267

whose entries are formed by setting Ai,j = a(φi, φj), ζi = uh(Ni) are the solution values, and

bi = (f, φi) is the right-hand side.

If Ω is square, we can triangulate it in a regular fashion as in figure A.12. Here, we say that

h is the length of one of the sides of a smaller squares. For an arbitrary node, we indicate its

support.

■■■■

❱■■❱

■❱ ■■

❱■■■❱■

◆

❊

❙

◆❊

❈

◆�

❙� ❙❊

�

◆✐

❤

Figure A.12: Example of a small regular 2D problem using finite element methods from (Braess,

2001).

In figure A.12, we focus on node Ni and indicate its center as the center C. The surrounding

triangles re labeled using Roman numerals I-VIII as done in (Braess, 2001). Since any interior

node i can be magnified to a view of C as the center, we will indicate φi as φC . Referring back

to figure A.11, we evaluate ∂φC
∂x and ∂φC

∂x over triangle I, II, etc., knowing that the length of the

perpendicular sides of any triangle is h. The result of these partial derivatives is recorded in the

following table:

I II III IV V V I V II V III

∂φC
∂x − 1

h 0 1
h 0 0 1

h 0 − 1
h

∂φC
∂y − 1

h 0 0 − 1
h 0 1

h
1
h 0

For any interior node, i, of our domain we evaluate Ai,i = a(φi, φi) = a(φC , φC), where

268

a(φC , φC) =

∫
I−V III

∇φC · ∇φCx

=

∫
I−V III

[(
∂φC
∂x

)2

+

(
∂φC
∂y

)2
]
dxdy

= 2

∫
I−IV

[(
∂φC
∂x

)2

+

(
∂φC
∂y

)2
]
dxdy by symmetry

=
2

h2

 ∫
I,III

∂φC
∂x

dxdy +

∫
I,IV

∂φC
∂x

dxdy

 by table above

=
2

h2

[
h2

2
+
h2

2
+
h2

2
+
h2

2

]
= 4.

Similarly, we can compute the product a(φC , φN). By symmetry, a(φC , φN) = a(φC , φW) =

a(φC , φS) = a(φC , φE). Notice for example that φC and φN only overlap in the regions I and

IV. φC and the other basis functions at E,S, and W will overlap on different regions, but as

stated, symmetry will result in the same product. For a(φC , φN), we obtain

269

a(φC , φN) =

∫
I,IV

∇φC · ∇φNdxdy

=

∫
I,IV

[
∂φC
∂x

∂φN
∂x

+
∂φC
∂y

∂φN
∂y

]
dxdy

=

∫
I

[
−1

h
∗ 0 +

−1

h
∗ 1

h

]
dxdy +

∫
IV

[
0 ∗ 1

h
+
−1

h
∗ 1

h

]
dxdy

=
−1

h2

∫
I

dxdy +

∫
IV

dxdy

=
−1

h2

[
h2

2
+
h2

2

]
= −1.

By symmetry, a(φC , φW) = a(φC , φS) = a(φC , φE) = −1. Additionally, a(φC , φNE) =

a(φC , φSW) = 0 since there is no overlap, and a(φC , φNW) = a(φC , φSE) = 0.

For this unit square, in fact, if we were to enumerate over all nodes on our square domain Ω

from the bottom-left to the top-right and apply this finite-element formulation to each node, Ni,

the resulting stiffness matrix would have the same coefficients as the matrix A in the five-point

finite-difference scheme from section 1.1. The only difference is that in the finite-difference

scheme, the matrix was multiplied by 1
h2 . In fact, here, the right-hand side, b where bi = (f, φi)

is the weighted average of f over each node. Thus, in fact, we will get out a h2 term over

our regular square domain. So, the 5-point finite-difference formulation and the finite element

scheme over a regular square domain agree.

We will continue looking at finite elements from the Galerkin method/variational problem

point-of-view by discussing more complex elements than those resulting from a triangulation of

our domain. First, however, it is important to formalize our function spaces (V and Vh) a more.

For this, we introduce and discuss briefly Hilbert Spaces.

270

A.4.3 Overview of Linear, Hilbert and Sobolev Spaces

Galerkin’s method is better understood analytically by using more sophisticated function spaces

than we have been using. The analysis has been dealt with extensively for finite elements in

(Braess, 2001). Here, we will give some broad overview similar to some of what is covered in

(Johnson, 1987; Iserles, 1996; Braess, 2001).

If V1, V2 are linear spaces (Weir, 1973; Iserles, 1996) over some field F then if V1 ⊂ V2, then

V1 is a subspace of V2. We can also discuss how a linear space has dimension, d, meaning its set

of basis functions consists of d linearly independent functions. In general for finite elements, we

assume our field is the field of real numbers,R. Examples of linear spaces overR are the vector

space, Rd, and Pn, the set of all polynomials of degree ≤ n. If we have a linear space, L over

the field, R, then we say that a norm , ||·|| is a function mapping from L→ R and observes the

following properties (a ∈ R, f, g ∈ L):

||f || ≥ 0

||f || = 0⇔ f = 0

||af || = |a| ||f ||

||f + g|| ≤ ||f || | ||g|| .

Some of the most general and important norms are known as p-norms:

||f ||p =

∫
Ω

|f(x|)pdx

 1
p

, 1 < p <∞ (A.22)

||f ||∞ = sup
x∈Ω
|f(x)| .

The domain, Ω, is the domain over which a set of functions is defined. If a space is equipped

with a p-norm with domain Ω, it is denoted as the linear space, Lp(Ω). If Ω is closed, then Lp(Ω)

271

is a normed Banach space. Some closed linear spaces are also equipped with an inner product

or scalar product of some sort. For example, for linear space, L overR, f, g, h ∈ L, (f, g) is an

inner product with the following properties (a ∈ R):

(f, g) = (g, f)

(af + bg, h) = a(f, h) + b(g, h)

(f, f) ≥ 0

(f, f) = 0⇔ f = 0.

A closed linear space with an inner product is referred to as a Hilbert space. For example,

L2(Ω) is a Hilbert space with the following norm (the 2-norm or Euclidean norm) where Ω is

closed:

||f || =

∫
Ω

|f(x|)pdx

 1
2

. (A.23)

The inner product is defined as

(f, g) =

∫
Ω

fgdx for f, g ∈ L2(Ω).

We further simplify the structure of the norm for L2(Ω) in equation A.23 using the inner

product formulation as ||f ||L2(Ω) =
√

(f, f). This is referred to as the L2 norm. Cauchy’s

inequality dictates the following relationship:

|(f, g)| ≤ ||f ||L2(Ω) + ||g||L2(Ω).

In general, Hm(Ω) is the set of all functions which are in L2(Ω), but whose 1st, 2nd, ...,mth

derivatives are also in L2(Ω). That is, we define the Hilbert spaces, Hm(Ω) ⊂ L2(Ω) where

272

Hm(Ω) = { v ∈ L2(Ω) | ∂v
∂xi

,
∂2v

∂x2
i

, ...,
∂mv

∂xmi
∈ L2(Ω), i = 1, ...d

where Ω is bounded onRd, d = 1, 2, or 3}.

These Hilbert spaces are specific examples of what are known as Sobolev spaces, on which

more information (specifically for finite elements) is available in (Braess, 2001). For our pur-

poses we are most concerned about the following Hilbert spaces:

H1(Ω) = { v ∈ L2(Ω) | ∂v
∂xi
∈ L2(Ω), i = 1, ...d

where Ω is bounded onRd, d = 1, 2, or 3},

H1
0 (Ω) = { v ∈ L2(Ω) | ∂v

∂xi
∈ L2(Ω), i = 1, ...d

where Ω is bounded onRd, d = 1, 2, or 3, v = 0 on ∂Ω}.

H1(Ω) and H1
0 (Ω) are also equipped with the following scalar product:

(v, w)H1(Ω) =

∫
Ω

(vw +∇v · ∇w) dx, v, w ∈ H1(Ω) where

||v||H1(Ω) =

∫
Ω

vw +∇v · ∇wdx

 1
2

, v ∈ H1(Ω)

Additionally, we explicitly define two common Hilbert spaces for finite element methods:

H2(Ω) = { v ∈ L2(Ω) | ∂v
∂xi

,
∂2v

∂x2
i

∈ L2(Ω), i = 1, ...d

where Ω is bounded onRd, d = 1, 2, or 3 and}

273

H2
0 (Ω) = { v ∈ L2(Ω) | ∂v

∂xi
,
∂2v

∂x2
i

∈ L2(Ω), i = 1, ...d

where Ω is bounded onRd, d = 1, 2, or 3, v = 0 on ∂Ω }.

Another set of functions worth defining explicitly are linear spaces of continuous functions.

Commonly used in analytical texts such as (Weir, 1973), they are helpful in explaining the prop-

erties of different finite elements. Let Ω̄ = Ω ∩ ∂Ω.

C0(Ω̄) = { v | v continuous on Ω̄},

C1(Ω̄) = { v ∈ C0(Ω̄) | ∂v
∂xi
∈ C0(Ω̄)} and

Cm(Ω̄) = { v ∈ C0(Ω̄) | ∂v
∂xi

,
∂2v

∂x2
i

, ...,
∂mv

∂xmi
∈ C0(Ω̄)}.

Using Hilbert spaces and better definitions of continuity, we can give better formulations for

variational problems for the Poisson equation. This leads to nice formulations of the problem

and allows for better analysis of the existence and uniqueness of solutions (Johnson, 1987).

In particular, solving the Poisson equation:

−∆u = f on Ω

u = 0 on ∂Ω

is equivalent to the variational problem:

∀v ∈ H1
0 (Ω), find u ∈ H1

0 (Ω) | (u′, v′) = (f, v)

The variational form of this problem is called a weak formulation, and the solution is known

as a weak solution. Weak solutions are not necessarily classical solutions, and in fact, weak

274

solutions can be shown to exist even if the existence of classical solutions can not be shown.

However, using the tools defined here, we can show that a weak solution exists and is unique,

and that the solution for the variational and minimization (Galerkin and Ritz) problems coincide.

In order to show this, assume that some Hilbert space, V , with product (u, v)V and norm

||u||V for u, v ∈ V , and assume a(u, v) acts linearly on V × V , L is a linear operator on V , and

require the following properties for all u, v ∈ V :

a(u, v) is symmetric,

| (a(u, v) |≤ α ||u||V ||v||V , α > 0,

a(u, u) ≥ β ||u||2V , β > 0 and

| L(u) |≤ γ ||u||V , γ > 0.

The first property dictates that a(., .) is continuous, the second that it is V-elliptic, and the

third that L(.) is continuous (Johnson, 1987). Given these three properties, the solution to the

variational form of the Poisson equation exists and is unique. Further, it is true that ||uh|| ≤ γ
β

where uh is the weak solution. The proof of this is not shown here, but it is available in (Johnson,

1987). The existence proof is based on the Lax-Milgram Theorem (Kress, 1989). This theorem

states that any Hilbert space, V with a V-elliptic (or strictly coercive) operator has an inverse,

whose proof is also based on use of the Cauchy-Schwarz inequality (Kress, 1989).

If we can show that the variational formulation for a partial differential equation has op-

erators which observe the properties above, then a solution exists and is unique. Consider the

2D Poisson equation A.18 with homogeneous Dirichlet boundary conditions set to zero. The

variational form of our problem can be seen as the following:

275

Find u ∈ V = H1
0 (Ω),Ω ⊂ R2 such that a(u, v) = L(v)∀v ∈ V where

a(u, v) =
∫
Ω

∇u · vdx, L(v) =
∫
Ω

fvdx, f ∈ L2(Ω).

Proving that a(u, v) is symmetric, continuous and V-elliptic/strictly coercive is relatively

straightforward. The V-elliptic aspect is slightly more complicated, and the details are left to

(Johnson, 1987). L(v) is straightforwardly continuous. Therefore, the solution to this problem

exists, is unique, and is equivalent to the solution of the minimization formulation of equation

A.18.

With a basic understanding of the analysis behind finite elements, we will discuss some of the

actual types of finite elements used. Thus far, we have only discussed basic triangular elements.

In the next section, we will formalize different finite element spaces, based on element shape.

A.4.4 Examples of Finite Element Spaces

Different finite element spaces of finite size consist of polynomial functions defined on some sort

of division of our domain Ω. For example, if Ω ⊂ R, we can triangulate our space as mentioned

before, and then define our finite element space to consist of triangular elements. Additionally,

a space can be subdivided into quadrilateral elements (Zorin et al., 2000). If Vh is the finite

element space, we require that Vh ⊂ Hk(Ω) where k depends on the order of our boundary

value problem (k = 1 for first order). Using notation from the previous section, (Johnson, 1987)

makes the following observations:

Vh ⊂ H1(Ω)⇔ Vh ⊂ C0(Ω̄) and

Vh ⊂ H2(Ω)⇔ Vh ⊂ C1(Ω̄).

A finite element space, Vh is now specified by the type of triangulation or subdivision of the

domain (the domain is made of disjoint elements Ki such as triangles or quadrilaterals), the way

276

each element, v ∈ Vh acts on each element Ki (linearly, bilinearly, quadratically, cubicly, etc.),

and parameters describing each function.

For example, if we have Ω ⊂ R2, triangulated into triangles, Ki, let Pj ⊂ H1 be the

following space:

Pj = v | v is a polynomial of degree j on each triangle Ki.

For example, P1 in R2 consists of all polynomials of the form v(x) = a0 + a1x + a2y,

x ∈ Ki for each triangle Ki. A clear basis for P1 is the set of functions {1, x, y} from which

any function, v ∈ P1 can be constructed. P1 is exactly the type of function we used in the basic

2D example, seen in figure A.11, where each basis function, φi, descends linearly from its main

support node, Ni, to the other vertices of each triangle which it supports.

Instead of descending linearly, a basis function could descend quadratically. That is, let P2

in R2 consists of all polynomials of the form v(x) = a0 + a1x + a2y + a3x
2 + a4y

2 + afxy,

x ∈ Ki for each triangle Ki. Now, each function has six coefficients, and a simple basis is the

set {1, x, y, x2, y2, xy}. In order to construct a basis function, φi, of this form at some point

Ni, we actually need each triangle, Kj to be defined by points at its vertices and points at the

midpoints of each edge. Hence, the number of nodes where we have to define support functions

has doubled. For example, figure A.13 shows how basis functions defined at the vertex of a

triangle look. However, now that we have nodes at the midpoints of edges, we have to be able

to define basis functions for nodes at edges. This can be seen in figure A.14. Obviously, the

support for this type of node is smaller.

We can also build triangular elements whose basis functions are in P3, P4, etc., but we

need more and more points on each triangle to construct higher-order (i.e., cubic) functions. In

general, for triangular elements, the degrees of freedom required for P1, P2 and P3 can be seen

in figure A.15.

277

◆❥

✣❥

Figure A.13: Example quadratic basis function, φj ∈ P2, supported over triangles Ki, which

have node, Nj , as a vertex. This an example of a vertex type basis function in P2.

✣✐

◆✐

Figure A.14: Example quadratic basis function, φj ∈ P2, supported over triangles Ki, which

have node, Nj , as a vertex. This an example of a edge type basis function in P2.

278

Figure A.15: Triangular elements of type P1, P2, and P3 from left to right. For these elements,

we need 3, 6 and 10 degrees, respectively, as indicated by the number of nodes necessary to build

the basis functions of necessary order.

As mentioned, our domain, Ω, does not necessarily need to be triangulated. Instead, we

could subdivide it into a series of quadrilaterals as in figure A.16.

This is a very irregular division of our domain, but if we looked at a single node,Ni up close,

we still define a basis function, φi, such that it is equal to 1 at Ni and 0 at all other nearby nodes

such as in figure A.17. Elements of this type have their basis functions defined in function spaces

defined by the notation Qk where functions in Q1 are bilinear of the form (a0 +a1x)(b0 + b1y),

and functions in Q2 are bivariate quadratic of the form (a0 + a1x + a2x
2)(b0 + b1y + b2y

2),

etc.

The degree of freedom of each quadrilateral element in Q1 is 4 as can be seen. For Q2, the

degrees of freedom increase to 9 as we need 9 points to adequately define a bivariate quadratic

function over each quadrilateral element of this type. In figure A.18, we can see the location of

points on such quadrilateral elements.

We can continue defining different types of elements with higher-order accuracy. As we add

279

❑✐

◆❥

Figure A.16: A domain, Ω which has been subdivided into quadrilaterals of varying size. Black

nodes indicate interior points while white nodes indicate points on the boundary, ∂Ω.

◆✐

✣✐

Figure A.17: Example of a basis function, φi ∈ Q1, defined over quadrilateral elements.

280

Figure A.18: Example of a basis function, φi ∈ Q1, defined over quadrilateral elements.

nodes to our elements, the resulting stiffness matrix becomes more dense. Hence, considerations

of accuracy versus computation time must be taken into account.

Additionally, all of the elements and function spaces shown thus far have had their functions,

v ∈ Vh (for Vh = P1,P2,Q1,Q2 ⊂ H1), in C0. However, at node points of our elements, we

can require that not only function values but their first, second, etc. derivatives are defined, or that

normal derivatives to the element are defined. Doing so can make functions from our function

space be C1 for example. Further details on these types of higher order elements are available

in (Braess, 2001) and (Johnson, 1987). Some of the more famous elements also have different

names, such as the Argyris, Hsieh-Clough-Tocher, and Serendipity elements, and details of these

constructions are available in (Braess, 2001).

Finally, we could imagine how to extend this to three dimensions. For example, a brick

element in three dimensions would be an extension of Q1 to 3D by creating three dimensional

brick from six quadrilateral faces and allowing the basis functions to be trilinear of the form

(a0 + a1x)(b0 + b1y)(c0 + c1y). For P1 and P2 we can create tetrahedral elements whose

function spaces are linear or quadratic, respectively; more details are available in (Johnson,

1987; Braess, 2001; Elman et al., 2005).

281

A.4.5 Other Boundary Conditions for Finite Elements

So far, the only Poisson equation we have discussed is one with Dirichlet boundary conditions

set to zero on ∂Ω. If we have different Dirichlet boundary conditions, it is very easy to modify

our finite element space to take them into consideration. For example, consider that we have the

following Poisson equation:

−∆u = f in Ω

u = g on ∂Ω.

Galerkin’s method dictates the following problem,

Find u ∈ Vg = {v | v = g on ∂Ω, ||v||1H (Ω) <∞} where

∀v ∈ V0, (∇u,∇v) = (f, v)

Here, Vg ⊂ H1 and V0 ⊂ H1
0 . Given some sort of triangulation or subdivision, Th of our

domain, Ω, where the set of internal nodes is designated by NΩ and boundary nodes by N∂Ω, we

approximate the solution u as uh:

uh =
∑

Ni∈NΩ

u(Ni)φi +
∑

Ni∈N∂Ω

u(Ni)φj

Therefore, an approximation to the Dirichlet boundary value Poisson problem becomes (where

ui = u(Ni), gi = g(Ni))

∑
Nj∈NΩ

uj(∇φi,∇φj) = (f, φi)−
∑

Nj∈N∂Ω

gj(∇φi,∇φj).

Consider that the following Poisson equation with Neumann boundary conditions:

282

−∆u = f in Ω

∂u

∂n
= g on ∂Ω.

Galerkin’s method dictates the following formulation:

Find u ∈ Vh = H1(Ω) where

∀v ∈ V0, (∇u,∇v)−
(
∂u

∂n
, v

)
∂Ω

= (f, v).

The notation
(
∂u
∂n , v

)
∂Ω

indicates the scalar product over the boundary, or

(
∂u

∂n
, v

)
∂Ω

=

∫
∂Ω

∂u

∂n
vds where ds is an element piece of ∂Ω.

Substituting and rearranging, we are now solving the following variational problem for u:

∀v ∈ H1(Ω), a(u, v) = (f, v) + (g, v)∂Ω.

We are again solving a system of equations of the form Aα = b where Ai,j = aφi, φj ,

αi = ui = uh(Ni) and bi = (f, φi) + (g, φi)∂Ω.

Imagine now that we are solving a Poisson equation with Robin boundary conditions. That

is, we seek a solution, u to the following problem:

−∆u = f in Ω

γu+
∂u

∂n
= g on ∂Ω

We put forth the variational formulation:

Find u ∈ Vh = H1(Ω) where

283

∀v ∈ V0, (∇u,∇v)−
(
∂u

∂n
, v

)
∂Ω

= (f, v).

Plugging in and rearranging the variational formulation such that we are solving the follow-

ing problem for u:

∀v ∈ H1(Ω), a(u, v) + (γu, v)∂Ω
= (f, v) + (g, v)∂Ω.

Again, we can put this into matrix-vector form Aα = b where Ai,j = a(φi, φj) + (γφi, φj),

αi = ui = uh(Ni), and bi = (f, φi) + (g, φi)∂Ω.

From this, we can also very easily extrapolate how to use Galerkin’s method to find a weak

solution to a Poisson equation with mixed boundary conditions. That is, if ∂Ω = ∂Ω1 ∩ ∂Ω2,

we can dictate that Dirichlet boundary conditions on ∂Ω1 and Robin or Neumann boundary

conditions on ∂Ω2, for example.

Understanding the basic ideas behind finite difference and finite element methods for con-

structing a system of linear equations for the Poisson equation, we will now look at various

methods for solving these systems of equations.

284

A.5 Background for Solving Various Systems of Linear Equations

For a system of linear equations of the formAu = bwhere we are solving for u,A being a matrix

of coefficients and b being a vector of known values, there are many known ways of solving for

u. Many software packages offer a variety of solvers for different situations. In fact, many of

these packages are built on top of LAPACK routines. Examples include MATLAB and PETSC.

Sometimes, any solver is adequate, but more often than not, it is important to exploit the nature

of the matrix A. Some matrices have a very regular structure (such as in finite differences or

finite elements on regular grids). Other times, the matrices have a less regular structure. We will

first consider matrices with a regular structure that are most usually sparse and look at a couple

of basic algorithms used for solving these systems. For basic linear algebra definitions, we refer

to (Strang, 1988). Much of the discussion below is adapted from (Iserles, 1996; Demmel, 1997;

Trefethen and Bau, 1997).

A.5.1 Direct Methods for Sparse and Banded Matrices

Gaussian Elimination

Gaussian elimination or LU factorization is one of the more commonly seen algorithms for

solving systems of linear equations. The basic idea is to compute a factorization of the form

A = LU where L is a lower triangular matrix and U is an upper triangular matrix. That is, if A

is an n by n matrix, then L and U will be of the form:

285

L =

1 0 0 . . . 0

l2,1 1 0 . . . 0

l3,1 l3,2 1 . . . 0

...
...

...
. . . 0

ln,1 ln,2 . . . ln,n−1 1

, U =

u1,1 u1,2 u1,3 . . . u1,n

0 u2,2 u2,3 . . . u2,n

0 0 u3,3 . . . u3,n

...
...

...
. . . un−1,n

0 0 . . . 0 un,n

One can easily see how to construct theL andU matrices. Basic pseudocode from (Trefethen

and Bau, 1997) computes the LU factorization for a matrix A in Algorithm A.5.1.

Algorithm 7 Gaussian Elimination with matrix A as input (size n× n)
U = A, L = I

for i = 1 to n− 1 do

for j = i+ 1 to n do

li,j =
ui,j
uj,j

for k = i to n do

uj,k = uj,k − lj,iui,k
end for

end for

end for

Using this type of Gaussian elimination algorithm can lead to instability issues, so pivoting

is used to prevent this (Trefethen and Bau, 1997). Further, looking at this algorithm, we see it

performs O(n3) floating point operations. This number of operations grows too rapidly; how-

ever, if A is sparse (i.e., many entries are zero), then many of the operations in the algorithm

are unnecessary. To further explain, we introduce the idea of bandwidth. A has upper band-

width, βup if Ai,j = 0, ∀j > i + βup, i, j ≤ n, and A has lower bandwidth βlow if Ai,j = 0,

∀i > j + βlow, i, j ≤ n. If βlow = βup = β, A has bandwidth β. For example, the matrix

resulting from an O(h2) finite difference approximation to the 1D Poisson Equation has β = 1

286

while in 2D, the matrix will have bandwidth based on the size of the problem. That is, if our

domain is an n×n grid, thenA is an n2×n2 matrix, so β = n−1 for the 5-point finite difference

method. On a 5 by 5 regular square grid, the resulting 25 by 25 matrix will have bandwidth of 4.

If we know that an n×n matrix A has bandwidth β < n, then many of the operations in our

Gaussian Elimination algorithm are unnecessary. That is, if A has bandwidth β, then it is clear

that L and U will also have bandwidth β. This can be proved inductively, as shown in (Iserles,

1996).

If L and U both have bandwidth β, then each Ai,j = (LU)i,j can be composed as (McLean,

2004)

(LU)i,j =
n∑
k=1

li,kuk,j

=

j∑
k=max(1,i−β,j−β)

li,kuk,j if 1 ≤ j < i ≤ n, i ≤ j + β

ui,j +
i−1∑

k=max(1,i−β,j−β)

li,kuk,j if 1 ≤ i < j ≤ n, j ≤ i+ β

0 else

We can avoid many operations in the Gaussian elimination algorithm; one can solve the

above equation for li,j to see how to compute each entry in L. We approximate the number of

operations it costs to compute L as ≈
n∑
j=1

∑j+β
i=j+1(j − i + β). It is clear that the asymptotic

running time for this is O(nβ2). Computing U would be similar as it has the same bandwidth

as L, as assumed. So, the cost of computing a banded Gaussian elimination is O(nβ2) for

bandwidth β.

We now indicate how the LU factorization of A aids in solving Au = b. Solving our system

is equivalent to trying to construct u = A−1b, or u = (LU)−1b = U−1L−1b. We first solve

Lv = b for v and then solve Uu = v for u. Initially, it looks like we have wasted our time

287

because instead of solving one system of linear equations, we now have to solve two systems of

linear equations of the same size. But, remember that L and U will have the same bandwidth as

A, so if A has a low bandwidth, so do L and U . We solve Ly = b in Algorithm 8.

Algorithm 8 Banded Solve with matrix L of size n× n and vector b of size n. Band size = β
y(1...n, 1...n) = 0

for i = 1 to n do

yi = bi

for j = i− β to i− 1 do

yi = yi − li,jyj
end for

end for

Therefore, solving for each yi involves approximately O(β) operations, and we do this n

times, so the total operation count to do the banded matrix-vector solve for Ly = b is O(βn).

Solving Uu = y is equivalent, and the algorithm is straightforwardly similar. Hence, solving a

system Au = b involves O((β2 + β)n) operations.

Cholesky Factorization

For a matrix such as those seen in 5-point and modified 9-point finite difference schemes, we

can do slightly better, using Cholesky in lieu of Gaussian elimination. We formally define a

symmetric matrix as one equal to its transpose (i.e., A = AT) and a positive definite matrix as

one for which xTAx > 0 for a vector, x of size n when A is of size n× n (we henceforth write

A ∈ Rn×n. Let A ∈ Rn×n be of the form

A =

 1 xT

0 C

 .
Here, x ∈ Rn and C ∈ R(n−1)×(n−1). Performing one step of Gaussian elimination in A

results in

288

 1 xT

0 C

 =

 1 0

x I

 1 xT

0 C − xxT

 .
If we perform another step of Gaussian elimination on the second matrix above, we get the

following factorization result:

 1 xT

0 C − xxT

 =

 1 0

0 C − xxT

 1 xT

0 I

 .
Putting these two results together,

A = D

 1 0

0 C − xxT

DT where D =

 1 0

0 C − xxT

 .
We can continue to iterate on the middle matrix, involvingC until we obtain a factorization of

the form A = D1D2 · · ·Dn ·DT
1 D

T
2 · · ·DT

n = LLT . We can generalize this result to an example

when the top-left entry, A1,1, is not necessarily 1, the details of which are left to (Trefethen

and Bau, 1997). We have computed an LU factorization where U = LT . A straightforward

algorithm, such as the one in (Trefethen and Bau, 1997) can be seen in Algorithm 9.

This factorization, just as the LU factorization, involves O(n3) operations, but the actual

operation cost is about half as much or O(n
3

2). Therefore, for a banded Cholesky solver, we

would perform about half as many overall operations, which is significant, or O(β
2n
2 +βn) total

operations to solve Au = b via Cholesky factorization.

Discretization Considerations

These solvers work best on linear systems of equations for sparse matrices that are well-organized

in a tightly banded-fashion. For example, for a 2D finite-difference Poisson equation solver on

a unit square, we would enumerate the discretization points using a simple five or nine point

289

Algorithm 9 Cholesky Factorization of matrix A of size n× n
L = A

for i = 1 to n do

for j = i+ 1 to n do

for k = i to n do

lj,k = lj,k − li,kli,j
li,i

end for

end for

for k = i to n do

li,k =
li,j√
li,i

end for

end for

differencing scheme. If we imagined that we were solving a Neumann boundary valued Poisson

problem there, the resulting matrix of coefficients would be symmetric, with low bandwidth and

positive-definite (for −∆u = b). Now, if we poorly enumerated our domain as in figure A.19,

then the resulting matrix would be symmetric, but it would be inefficiently banded.

As one would expect, avoiding such a poor enumeration scheme on a regular domain would

be quite easy. However, if one were using finite elements to create a stiffness matrix, it would

be easy to accidentally number elements next to each other with numbers far from each other.

For example, if we triangulated an irregular domain into 100 triangular elements, we could acci-

dentally number a triangular element 1 and one next to it 100 in the interior of our domain. The

resulting stiffness matrix would be poorly banded, and a Cholesky Solver would be inefficient.

Often these problems can be fixed, and there are ways of rearranging matrices to make them

more tightly banded to exploit the sparsity, but not paying attention to the sparse or dense nature

of a matrix can create unnecessary bottlenecks.

290

��������

���� ����

✉✶✸❀✶ ✉✷❀✶ ✉✶✷❀✶ ✉✹❀✶

✉✽❀✶

✉✸❀✶

✉✺❀✶

✉✼❀✶✉✾❀✶
✉✺❀✶

✉✼❀✶ ✉✶✹❀✶ ✉✶✶❀✶

✉✶❀✶ ✉✹❀✶ ✉✶✺❀✶

Figure A.19: A domain whose domain points have been poorly numbered for the Poisson equa-

tion. The resulting matrix of coefficients is inefficiently banded, resulting in an inefficient solver.

Other Direct Methods

Again we mention that a stable Gaussian or Cholesky algorithm would incorporate pivoting

(Trefethen and Bau, 1997). Further, there are many other direct solver methods which involved

various factorizations. Examples are QR Factorization (including Gram-Schmidt Orthogonal-

ization, modified GS and Householder Triangulation) where we factor A as A = QR, R being

upper-triangular, and Q being an orthonormal matrix (Trefethen and Bau, 1997), and the Sin-

gular Value Decomposition (or SVD) where A is factored as A = USV T where U and V are

orthonormal, and S has positive real values along the main diagonal and zero everywhere else.

These factorizations methods, when done stably, provide nice accurate solutions to well-

posed problems. Additionally, as imagined, they can often be performed with very little extra

storage space, or can often be done in place which is important when the problem size is large.

However, often times a very accurate solution is not as necessary, or often we would like to

be able to cut off the accuracy of the solution at a certain point. For this, we turn to iterative

291

methods.

A.5.2 Iterative Methods

Direct Methods such as those described in the last section work well for some problems, but

for more dense matrices the amount of work for solving an n × n system often involves O(n3)

work. When well-posed, these problems result in a high-level of accuracy. Iterative methods for

solving systems of linear equations can reduce this operation count to O(n2) or even O(cn) for

some constant c; however, reducing the operation count may result in less accuracy. The basic

idea behind iterative methods is to take a matrix, A and a vector, x and compute Ax as quickly

as possible. Many of the more contemporary iterative methods refer to Krylov subspaces. For

example, the Krylov subspaces generated by A and x would be defined as K(1),K(2), ...,K(n)

where K(k) is the subspace spanned by the vectors, x,Ax,A2x,A3x, ..., Ak−1x, where A3x

is generated by successive multiplication, A(A(Ab)), etc. In general, we project an n-sized

system into a Krylov subspace of lower dimension. There are several iterative methods of note,

referred to by a variety of names. Conjugate Gradient and Generalized Minimal Residuals

(GMRES), Lanczos, and Arnoldi Iteration are methods based on Krylov subspaces. Successive

Over-Relaxation (SOR), Gauss-Seidel, and Jacobi are classic iterative methods, which are older

than the Conjugate Gradient and GMRES methods, but often just as powerful.

We will begin with an introduction to some of the classic iterative schemes and then discuss

some of the more modern Krylov subspace methods.

Classic Iterative Methods

The idea behind the classic iterative methods is to turnAu = b into an iterative sequence of steps

to reach a point of convergence. We set up a system of the form

292

u[i+1] = Hu[i] + v. (A.24)

H is an iteration matrix, and v is a vector, both independent of the step number, i, but based

on the original form of A and b. The sequence, u[0], u[1], ... should converge to the solution, ū of

the system.

We show a theorem, yet do not prove it, which states that an iterative sequence of this type,

for appropriate H and v does in fact converge. To do this, we define the spectral radius, ρ(W),

of a matrix W ∈ Rn×n where Λ = {λ1, λ2, ..., λn} is the set of the n eigenvalues of W :

ρ(B) = max Λ.

Given any linear system Au = b, we have the following theorem from (Iserles, 1996):

Theorem A.7. A scheme such as the one in equation A.24 for appropriate H and v converges

to a unique limit ū if and only if ρH < 1, independent of the initial choice for the iteration, u[0].

Further, ū is the correct solution if and only if v = (I −H)A−1b.

The goal is to construct the appropriateH and v. This is, in fact, the main difference between

the different classic iterative methods. Imagine we split some matrix A into a matrix, D, whose

diagonal is equal to that of A, and all other entries are zero, and into another matrix, E whose

diagonal entries are zero and all other entries are equal to those in A. Further split E into a

strictly lower triangular matrix,L0 whose diagonal entries are zero, and a strictly upper triangular

matrix, U0 whose diagonal entries are zero. L0’s and U0’s nonzero entries correspond to entries

in A. Graphically, this can be seen in figure A.20, reproduced in part from (Iserles, 1996).

Define L = D−1L0, U = D−1U0. The Jacobi iteration method defines H and v as:

H = L+ U = D−1E

293

✰

❂
❉

❆ ❂ ❉ ❊

✰ ▲
✵

❯
✵

Figure A.20: Split A into matrices D and E as seen and described above. Further E is split into

L0 and U0.

v = D−1b.

The Gauss-Seidel iteration method defines H and v as

H = (I − L)−1U

v = (I − L)−1D−1b.

The Successive Over-Relaxation or SOR iteration method defines H and v as

H = (I − ωL)−1[(1− ω)I + ωU]

v = ω(I − ωL)−1D−1b.

The Gauss-Seidel method is simply the SOR method with ω = 1; however, it is such a

commonly seen method, it is often singled out.

294

All three methods conform to the necessary properties in the above theorem. The Jacobi

method, in practice, converges more slowly than Gauss-Seidel and SOR (Demmel, 1997), and

Jacobi actually requires more storage space (Iserles, 1996). For specific values of ω, SOR can

outperform Gauss-Seidel quite substantially, and analysis of how to choose different values of ω

for different problems and spectral radii are available in (Iserles, 1996).

We will revisit SOR when we discuss Multigrid Methods, but we now discuss Krylov-based

iterative methods, specifically the Conjugate Gradient method, and we briefly introduce the GM-

RES method and Arnoldi and Lanczos iteration.

Krylov-Based Iterative Methods

We briefly introduced the idea of Krylov subspaces in section A.4. Different Krylov-based

iterative methods are best used for different types of matrices, A and problems. (Trefethen and

Bau, 1997) arranges several of the Krylov-based algorithms into a table to indicate when they

should be used. This table is reproduced in figure A.21 for a real matrix, A.

The majority of systems we have seen are symmetric, so we will begin with a discussion of

the basic Conjugate Gradient method.

Conjugate Gradient Method

The Conjugate Gradient (CG) method is best suited for symmetric positive definite matri-

ces. As these are the type of matrices often encountered in the numerical approximation to the

Laplacian, it makes the most sense to discuss this for the Poisson equation, −∆u = b along

with boundary conditions. This discussion of CG will be based largely on (Shewchuk, 1994)’s

introduction and further details are available there.

Define the quadratic form for vectors u and b, matrix A and constant c as

295

Conjugate

Gradient

GMRES

Lanczos

Arnoldi

Iteration
❆ ✻❂ ❆

❚

❆ ❂ ❆
❚

❆✉ ❂ ❜ ❆✉ ❂ ✕✉

Figure A.21: For a system of equations, we can have Au = b for b 6= c ∗ u for some constant, c.

If Au = λu, then u is an eigenvector with corresponding eigenvalue, λ. A = AT corresponds to

a symmetric real matrix.

f(u) =
1

2
uTAu− bTu+ c. (A.25)

Take the gradient of equation A.25,∇f(u), to obtain

∇f(u) =
1

2

(
ATu+Au

)
− b.

If A is a symmetric matrix, then this equation becomes

∇f(u) = Au− b.

The solution to Au = b is a critical point of equation A.25. In fact, if A is positive-definite,

then u represents a minimum vale of f . To see why, imagine that ū solvesAu = b exactly. Then,

296

for d 6= 0, f(ū+ d) = f(u) + 1
2d

TAd. But, A positive-definite⇔ dTAd > 0. Hence, f(u) can

be thought of as a paraboloid with a minimum saddle-point (Shewchuk, 1994).

Imagine we begin at some arbitrary value, u[0], and successively move down the paraboloid

until we reach the critical point. We indicate our steps as a series, u[i], i = 1, 2, At some step,

k, we know that f increases the fastest when ∇f is maximized. So, we move in the direction,

∇f(u[k]) = b−Au[k].

Let r̄ to be the negation of the residual so that r̄[i] = −∇f(u[i]) = b − Au[i]. Choose

some value α such that we take a step in the direction of r̄[i] and end up at a new point u[i] =

u[i−1] + αr̄[i−1]. In order to find α, though, we need to minimize the quadratic function, f . This

is done when
df(u[i])

dα = 0. Using the chain rule, this equation is the same as ∇f(u[i])r̄[i−1] = 0.

But, ∇f(u[i]) = r̄[i], so α minimizes f when r̄[i] and r̄[i−1] are orthogonal (Shewchuk, 1994).

For example, if we set r̄T[1]r̄[0] = 0 to enforce orthogonality, we could determine the initial value

for α as follows from (Shewchuk, 1994):

r̄T[1]r̄[0] = 0

⇒ (b−Au[1])
T r̄[0] = 0

⇒ (b−A(u[0] + αr̄[0]))
T r̄[0] = 0

⇒ (b−A(u[0]))
T r̄[0] = α(A(r̄[0]))r̄[0]

⇒ α =
r̄T[0]r̄[0]

r̄T[0]Ar̄[0]

Generalizing this, imagine that we have an algorithm, which at the ith step computes the

following:

r[i] = b−Au[i]

297

α[i] =
r̄T[i]r̄[i]

r̄T[i]Ar̄[i]

u[i+1] = u[i] + α[i]r̄[i]

Intuitively, this would generate the result of sliding down the paraboloid as described earlier.

There are several problems, however. First, when do we stop? This can actually be fixed easily

by stopping when the norm of the residual reaches a desired value or when the value of the norm

of the difference u[i+1]−u[i] becomes so small, that we are effectively no longer moving. These

two parameters are obviously problem-dependent.

Another problem, however, is more complicated. We may be taking steps in the same di-

rection as steps taken earlier. This is incredibly inefficient. The above method is accurately

referred to as the method of Steepest Descent. We modify this to a similar method of Conjugate

Directions (Shewchuk, 1994).

We could take a series of m orthogonal steps, p[0], ..., p[m−1] such that the ith error, vector

e[i] = u[i] − ū is orthogonal to p[i], where ū is the exact solution to Au = b. Then, calculate

u[i+1] as u[i] + α[i]p[i], where α[i] as calculated before. This would work better, but in order to

calculate the α values, we need e[i] which needs the exact solution, ū, and if we had the exact

solution,why would we do this at all? In fact, we can do this by realizing that Ae[i] = −r̄[i].

Now, we make the direction vectors A-conjugate or just conjugate (also known as A-orthogonal)

to each other. That is, pT[i]Ap[j] = 0 for i 6= j, and we make the ith vector, p[i] conjugate to

Ae[i+1]. Using these definitions and what we now know about Ae[i] = −r̄[i], we derive α[i]:

298

pT[i]Ae[i+1] = 0

⇒ pT[i]A(e[i] + α[i]p[i]) = 0

⇒ α[i] = −
pT[i]Ae[i]

pT[i]Ap[i]

⇒ α[i] = −
pT[i]r̄[i]

pT[i]Ap[i]

The proof that this converges can be seen in (Shewchuk, 1994). Now, all we need to be able

to do is calculate the vectors, p[i]. To do this, assume we have n linearly independent vectors,

γ0, γ1, ..., γn−1. Then, we set p[0] = γ0 and derive the other p[i] using a Gram-Schmidt type

process (Trefethen and Bau, 1997):

p[i] = γi +

i−1∑
j=0

ηi,jp[j].

Define the ηi,j values using previously calculated p[i] values, the fact that the vectors are

conjugate, and the last equation to achieve:

pT[i] = γTi +
i−1∑
j=0

ηi,jp
T
[j]

⇒ pT[i]Ap[k] = γTi Ap[k] +
i−1∑
j=0

ηi,jp
T
[j]Ap[k]

⇒ γTi Ap[k] + ηi,kp
T
[k]Ap[k] = 0, i > k

⇒ ηi,k =
γTi Ap[k]

pT[k]Ap[k]

The basic idea as to how we construct each p[i] can be seen in figure A.22, reproduced from

(Shewchuk, 1994).

299

✌✵

✌✶

♣❬✵❪

✖✌✶ ❫✌✶

♣❬✵❪

♣❬✶❪

Figure A.22: Construction of p[1] begins with setting p[0] = γ0 where γ0 and γ1 are pre-known

linearly independent vectors. We use the fact that γ1 consists of a part, γ̄1 which is parallel to p[0]

and γ̂1 which is conjugate to p[0]. Following conjugation, via the process above, we set p[0] = γ̂1

such that p[0] and p[1] are conjugate.

Unfortunately, the way we are constructing the p[i] vectors via Gram-Schmidt conjugation

forces us to store old vectors. Storage is less of an issue than the fact that building all of the p[i]

involves O(n3) operations. This can be improved with some tricks and knowledge of Krylov

subspaces to build what is finally known as the method of Conjugate Gradients.

Building the search directions, p[i] is what is causing a bottleneck in the Conjugate Directions

method above, but it was noticed by Hestens and Stiefel in the 1950s that the residual at some

step j is orthogonal to the previous steps search direction. The residuals were shown to work for

the Steepest Descent method, so using this and what we know about the Conjugate Directions

method, we can build the Conjugate Gradients method.

LetKi be the ith Krylov subspace,Ki = span{b, Ab,A2b,, Ai−1b}. Then, the ith Krylov

subspace for A and a search direction, p[j] isKi = span{p[j], Ap[j], A
2p[j],, A

i−1p[j]}. Also,

let Pi be the subspace spanned by the first i search vectors, Pi = span{p[0], p[1], ..., p[i−1]}.

The subspace, span{r̄[0], r̄[1], ..., r̄[i−1]} = Pi since the residuals are simply built from the

search vectors. Further, as the residual is, as designed, orthogonal to the previous search direc-

tion, the fact that the residuals span the same subspace as the search vectors implies that the

300

residuals must all be orthogonal as well. That is,

pT[i]r̄[j] = 0 for i 6= j ⇒ r̄T[i]r̄[j] for i 6= j.

However, each residual is a product of A and the corresponding error vector. So, each

residual is a linear combination of the previous residual and the product of A and the previous

search vector. That is,

r̄[i+1] = −Ae[i+1]

= −A
(
e[i] + αip[i]

)
= −Ae[i] −Aαip[i]

= r̄[i] − αiAp[i]

Thus, since p[i] ∈ Pi, and Pi+1 is simply the union of Pi and the product APi (the product

of A with the elements in Pi), then Pi = span{p[0], Ap[0], A
2p[0],, A

i−1p[0]}. This is simply

the ith Krylov subspace for A and p[0]. Hence, Pi = Ki. Further, this means that Ki =

span{r̄[0], Ar̄[0], A
2r̄[0], ..., A

i−1r̄[0]}. The benefit of this becomes clear when we realize the

power of the fact that AKi ⊂ Ki+1. Coupled with the fact that we know r̄[i+1] is orthogonal

to Ki+1, we now know that r̄i+1 is conjugate to Ki. If we notice that p[i] is not in Ki, but

all previous search vectors are, then r̄i+1 will be conjugate to all search vectors, p[k], k < i.

This greatly simplifies the Gram-Schmidt Conjugation algorithm from before. From (Shewchuk,

1994), we can evaluate the ηi,j values as:

ηi,j =

r̄T
[i]
r̄[i]

αi−1pT[i−1]
Ap[i−1]

if i = j + 1

0 if i > j + 1

301

For each ηi,j , we only need to compute a matrix-vector multiply, and if the number of nonzero

entries in A is small, such as m << n2, then we can do this in O(m) work.

We simplify the notation for η as ηi,i−1 = ηi and note we can rewrite ηi,i−1 as
r̄T
[i]
r̄[i]

r̄T
[i−1]

r̄[i−1]
.

In fact, as ηi represents a comparison between the new residual and the previous residual, this

can be used to decide when to discontinue the iteration process. That is, as ηi → 1, the residual

for time step i will be close to that from i − 1. We use this to set a threshold for η. Putting

this all together, we present the Conjugate Gradient as seen in (Trefethen and Bau, 1997) in

Algorithm A.5.2.

Algorithm 10 Conjugate Gradient Iteration (CG) on matrix A of size n× n and vector b of size n
u[0] = (0...n− 1, 0...n− 1) = 0

r̄[0] = b and p[0] = r̄[0]

for i = 1 to ... do

αi =
r̄T
[i−1]

r̄[i−1]

p[i−1]TAp[i−1]
(step length)

u[i] = u[i−1] + αip[i−1] (new updated approximation to solution)

r̄[i] = r̄[i−1] − αiAp[i−1] (new residual)

ηi =
r̄T
[i]
r̄[i]

r̄T
[i−1]

r̄[i−1]
(measure of improvement)

p[i] = r̄ + [i] + ηip[i−1] (new search direction)

end for

Arnoldi Iteration, GMRES, and Lanczos Iteration

Arnoldi Iteration and the Generalized Minimal Residuals methods are two Krylov subspace

based methods, which we will mention briefly. Lanczos Iteration is a special case for Arnoldi

Iteration. Much of the discussion is based on (Trefethen and Bau, 1997). Both of these methods

are readily available in modern linear algebra packages and software, including LAPACK and

MATLAB.

302

Arnoldi Iteration is a process, in which we iteratively project onto increasingly larger Krylov

subspaces. In order to understand this, we step back, and first explain the idea of an Hessenberg

matrix. This is a matrix where everything is zero below the first diagonal. For example, if

H ∈ Rn×n is a Hessenberg matrix, then it is of the form

H =

h1,1 h1,2 h1,3 . . . h1,n

h2,1 h2,2 h2,3 . . . h2,n

0 h3,2 h3,3 . . . h3,n

...
...

...
. . . hn−1,n

0 0 . . . hn,n−1 hn,n

.

As mentioned earlier, direct methods such as Gram-Schmidt orthogonalization or House-

holder triangulation factor a matrix as A = QR (also known as QR factorization), where Q is

an orthogonal matrix and R is upper-triangular. Assuming we know how to do this and refer

to (Demmel, 1997; Trefethen and Bau, 1997) for specifics and further assume we can factor a

matrix A as A = QHQT where H is a Hessenberg matrix and Q is orthogonal. We know we

can do this if a QR factorization exists for AQ = QH . Now let Qm ∈ Rm×m be the matrix

formed by the first m columns of Q ∈ Rn×n (m < n):

Qm =

q1,1 q1,2 q1,3 . . . q1,m

q2,1 q2,2 q2,3 . . . q2,m

q3,1 q3,2 q3,3 . . . q3,m

...
...

... . . .
...

qn,1 qn,2 qn,m

. (A.26)

Let Ĥm be the (m+ 1)×m upper section of H:

303

Ĥm =

h1,1 h1,2 h1,3 . . . h1,m

h2,1 h2,2 h2,3 . . . h2,m

0 h3,2 h3,3 . . . h3,m

...
.

...

0 0 . . . hm,m−1 hm,m

0 0 . . . 0 hm+1,m

.

Then, AQm = Qm+1Ĥm, or if qm is themth column ofQ (the last column ofQm, of length

n),

Aqm = h1,mq1 + h2,mq2 + ...+ hm,mqm + hm+1,mqm+1.

The set of the orthonormal vectors, {qi} spans the same basis as the Krylov subspaces (Tre-

fethen and Bau, 1997). That is, for our matrix, A ∈ Rn×n and some vector b ∈ Rn, for the mth

Krylov subspace, we obtain

Km = span{b, Ab,A2b, ..., Am−1}

= span{q1, q2,, qm}.

Therefore, if we let K̂m ∈ Rm×n be the matrix whose columns are b, Ab,A2b, ..., Am−1b,

then K̂m has a QR factorization of the form K̂m = QmRm where Qm is the same as in equation

A.26.

We now project A orthogonally into the mth Krylov subspace, Km as QTmAQm; however, if

we notice that QTmQm+1 is just a modified identity matrix of size m× (m+ 1) (there is an extra

row of zeros on the (m + 1)st row), QTmQm+1Ĥm is just Hm, the first m rows and columns of

H (Trefethen and Bau, 1997).

304

Hm =

h1,1 h1,2 h1,3 . . . h1,m

h2,1 h2,2 h2,3 . . . h2,m

0 h3,2 h3,3 . . . h3,m

...
.

...

0 0 . . . hm,m−1 hm,m

Remember A = QHQT ; therefore, Hm = QTmAQm, implying that Hm is a way of rep-

resenting the orthogonal projection of A into the mth Krylov subspace. (Trefethen and Bau,

1997).

This introduction into Arnoldi Iteration is very brief, but it gives a better understanding of

how we can represent the Krylov subspaces, and how they can be used for factoring a matrix.

This process can be used for locating eigenvalues very quickly, and it is a powerful tool for other

Krylov-based algorithms such as GMRES. For now, we will quickly show the basic algorithm

from (Trefethen and Bau, 1997) in Algorithm 11 for computing Q and H from A.

Algorithm 11 Arnoldi Iteration for matrix A of size n× n
q1 = random (n, 1) vector

q1 = q1
||q1||

(normalize q1)

for i = 1 to ... do

v = Aqi

for j = 1 to n do

hj,n = qTj v

v = v − hj,nqj
end for

hn+1,n = ||v||

qn+1 = v
hn+1,n

end for

305

Generalized Minimal Residuals (GMRES) is based on Arnoldi iteration, which as shown,

can be used for transforming a matrix into Hessenberg form, using the Krylov subspaces. Ad-

ditionally, as mentioned, Arnoldi can be used for locating eigenvalues. We can use Arnoldi

iteration to solve for a system Au = b where A is not necessarily symmetric (but it must be

nonsingular).

Let the exact solution to this system be ū, and at some step, i, let u[i] be an approximation

where r̄[i] = b − Au[i] is a residual. We further require that u[i] ∈ Ki, the ith Krylov subspace.

GMRES attempts to solve the problem,

Find v ∈ Rn|
∣∣∣∣∣∣AK̂nv − b

∣∣∣∣∣∣ is minimized.

K̂n is the matrix whose columns are b, Ab, ..., Anb. Solving this problem can be unstable

and slower than necessary, so we modify it slightly. We use the Arnoldi Iteration algorithm to

build the matrices, Qi for i = 1...n, whose columns, as described, are vectors which also span

the ith Krylov subspace, and solve the following modified problem:

Find y ∈ Rn| ||AQny − b|| is minimized.

This is equivalent to

Find y ∈ Rn|
∣∣∣∣∣∣Qn+1Ĥny − b

∣∣∣∣∣∣ is minimized.

Multiply this by Qn+1. This does not change the norm, so the minimum value of the norm

will not change either. Hence,
∣∣∣∣∣∣Qn+1Ĥny − b

∣∣∣∣∣∣ is equivalent to
∣∣∣∣∣∣Ĥny −QTn+1b

∣∣∣∣∣∣. Further,

QTn+1b = ||b|| e1, where e1 is the first column of the n× n identity matrix. So,

Find y ∈ Rn|
∣∣∣∣∣∣Ĥny − ||b|| e1

∣∣∣∣∣∣ is minimized.

306

Solving this problem amounts to solving Ĥny = t where Ĥn is a Hessenberg matrix, so

this can be solved very quickly using computational tricks, further explained in (Demmel, 1997;

Trefethen and Bau, 1997). Once we have y, we quickly construct the iterative solutionu[i] = Qiy.

Putting this all together, we have the algorithm from (Trefethen and Bau, 1997) in Algorithm 12.

Algorithm 12 GMRES for matrix A of size n× n and vector b of size n
q1 = b

||b|| (normalize q1)

for i = 1 to ... do

Run the ith step of the Arnoldi Iteration Algorithm

Minimize
∣∣∣∣∣∣Ĥny − ||b|| e1

∣∣∣∣∣∣ for y

u[i] = Qiy (Qi from Arnoldi Iteration)

end for

Lanczos Iteration is another Krylov-based method for problems as seen in figure A.21. For

real matrices, A, we require that A is symmetric (hermitian for complex matrices, which we are

not concerned with here). Lanczos iteration can be seen as a restriction on Arnoldi iteration. If

we remember from the section on Arnoldi Iteration, we can write the Hessenberg matrices, Hm

as

Hm = QTmAQm.

Since A is symmetric, QTmAQm is symmetric, but Hm symmetric means that it has to be

tridiagonal since everything below the first diagonal has to be zero. (Trefethen and Bau, 1997)

This greatly simplifies the Arnoldi iteration method. If we consider Hn as being composed of

only two vectors along the diagonal, α and β we get the following:

307

Hm =

h1,1 h1,2 0 0 . . . 0

h2,1 h2,2 h2,3 0 . . . 0

0 h3,2 h3,3 h3,4 . . . 0

0 0 h4,3 h4,4 . . . 0

...
.

...

0 0 0 . . . hm,m−1 hm,m

=

α1 β1 0 0 . . . 0

β1 α2 β2 0 . . . 0

0 β2 α3 β3 . . . 0

0 0 β3 α4 . . . 0

...
.

...

0 0 0 . . . βm−1 αm

So, the Arnoldi Iteration algorithm is simplified to the following (Trefethen and Bau, 1997)

in Algorithm 13.

Algorithm 13 Lanczos Iteration matrix A of size n× n
β0 = 0, q0 = random (n, 1) vector, and q1 = q1

||q1||

for i = 1 to ... do

v = Aqi

αi = qTi v

v = v − βi−1qi−1 − αiqi
βi = ||v||

qi+1 = v
βi

end for

Lanczos Iteration can also be modified in order to construct orthogonal polynomials. Specif-

ically, we can use a modified version to construct the Legendre polynomials, which can be used

in the Gauss-Legendre Quadrature method for approximating an integral with a finite sum more

stably than other methods such as Newton-Cotes (Iserles, 1996; Trefethen and Bau, 1997).

A.5.3 The Multigrid Method

The Multigrid Method is a technique which uses the classic iterative methods and a divide and

conquer approach. From a high-level viewpoint it uses a hierarchy of fine and coarse grids to

308

approximate solutions, which helps remove high-frequency error. This method has been covered

heavily in several papers and texts, specifically (Hackbusch and Trottenberg, 1982; Hackbusch,

1985), which collects significant papers from Brandt, Hackbusch and Trottenberg on this subject.

If we want to solve a system of linear equations for the 2D Poisson equation of the form

Au = b on a grid of size n× n using an iterative method, we could use a solution on an n
2 ×

n
2

grid as an approximation to u[0]. However, we will also solve our equation on the n
2 ×

n
2 grid

iteratively, using a solution from an n
4 ×

n
4 as the initial solution vector. And the n

4 ×
n
4 solution

is solved iteratively, using a solution from an n
8 ×

n
8 , etc.(Demmel, 1997). The coarsest grid is

the stopping point for the approximations.

The listing of finer and coarser grids is known as a hierarchy of grids. We can move up and

down this hierarchy; coarsening refers to moving from a higher to finer grid, and refining means

moving from a coarser to a finer grid (Iserles, 1996). An example of a hierarchy of grids can be

seen in figure A.23, including the directions for grid refining and coarsening.

Grid Coarsening

Grid Refinement

Figure A.23: A series of grids of increasing refinement. For Multigrid, we maintain a hierarchy

of grids where the finest grid is of size n × n, the next grid in the hierarchy in the coarsening

direction is of size n
2 ×

n
2 , the next of size n

4 ×
n
4 and so for the number of grids in our hierarchy.

The example above shows a hierarchy of 4 grids, where the coarsening and refinement directions

are indicated.

309

To explain Multigrid, begin with a simple example, assuming we already have an approxima-

tion for the starting point on the finest grid, and we wish to solve a system Au = b, representing

the Poisson equation using the Multigrid method, but we will use only two grids: a coarse and a

fine one. Further, we will use Gauss-Seidel as our iterative method for now. Indicate G[c] as our

coarse grid and G[f] as our fine grid as in figure A.24. That is, we are solving

Afuf = bf on G[f].

Further assume that we already have uf[0]
for G[f]. We perform a few iterations with an

iterative method on G[f], and we have a residual,

rf = Afuf − bf .

●❬❝❪ ●❬❢❪

Figure A.24: A hierarchy of two grids: a coarse one, G[c] and a fine one, G[f].

Running an iterative method on G[f] has helped to smooth the higher-frequency components

of the residual error. We now move the residual onto the coarse grid, so we use a restriction

function. That is, if rf is the residual on G[f], we compute what this residual looks like on G[c].

Before we restrict ourselves to the coarse grid, we save our current solution, uf and call it ufold .

Then let the restriction matrix be R where

310

rc = Rrf .

We now smooth the residual on the coarse grid by solving

Acuc = −rc.

Ac is a matrix composed by approximating our system on the finer grid. For example, if Af

consists of the coefficients of the five-point or modified nine-point finite difference method for

approximating the Poisson equation on G[f], Ac consists of coefficients for the same method on

G[c]. Assume we run a few iterations of an iterative method (such as Gauss-Seidel) on G[c] and

wish to now project back to G[f]. To this end, we will use a prolongation function in the form of

a matrix, P where

ûf = Puc.

Update the solution on G[f] as

ufnew = ufold + ûf .

Evaluate rfnew as:

311

rfnew = Afufnew − bf

= Af (ufold + ûf)− bf

= Afufold +Af ûf − bf

= rfold + bf +AfPuc − bf

= rfold −AfPA
−1
c rc + (bf − bf)

= rfold −AfPA
−1
c Rrfold

= (I −AfPA−1
c R)rfold .

The new residual is the old residual plus a contribution from going fromG[f] toG[c] and back

(Iserles, 1996). The operators, R and P can be represented as matrices, but this is an ineffective

use of space since the resulting matrix-vector products only involve a few operations per row.

An incredibly simple way to build uc from uf on a 2D grid would be (assuming Gc ∈ Rn×n,

Gf ∈ R2n×2n):

uci,j = uf2i,2j
for i, j = 1, 2, ...n

This method proves too naı̈ve and can present problems when trying to construct P . Instead,

(Iserles, 1996) suggests using the full weighting scheme:

uci,j =
1

4
uf2i,2j

+
1

8

(
uf2i−1,2j

+ uf2i,2j−1
+ uf2i+1,2j

+ uf2i,2j+1

)
+

1

16

(
uf2i−1,2j−1

+ uf2i+1,2j−1
+ uf2i−1,2j+1

+ uf2i+1,2j+1

)
for i, j = 1, 2, ...n

Similarly, P is represented as a very straightforward linear interpolation scheme from (Iser-

les, 1996). Obviously, higher-order schemes are available, but we present this one for the general

312

idea:

uf2i−1,2j−1
= uci,j i = 1, ..., n j = 1, ...n

uf2i−1,2j
= 1

2

(
uci,j + uci,j+1

)
i = 1, ..., n− 1 j = 1, ...n

uf2i,2j−1
= 1

2

(
uci,j + uci+1,j

)
i = 1, ..., n j = 1, ...n− 1

uf2i,2j
= 1

4

(
uci,j + uci+1,j + uci,j+1 + uci+1,j+1

)
i = 1, ..., n− 1 j = 1, ...n− 1

Knowing how to move between a coarse and fine grid, we can travel between a hierarchy of

several grids, but it remains to be seen how we use all of this to solve a system of linear equations

from beginning to end. Assume we have a series of four grids from coarse to fine as in figure

A.23, labeling the coarsest as G[1] and the finest as G[4]. The basic idea is to use what is known

as a V-cycle as seen in figure A.25 to form a scheme for solving our system. Moving down the

G[i] axis indicates a coarsening process, and moving up the G[i] axis indicates a refinement.

Time

●❬✐❪

✸

✷

✶

✹

Figure A.25: A basic V-cycle, indicating how we can move between our hierarchy of grids in

coarsening direction (down the G[i] axis), and the refinement direction (down the G[i] axis).

As discussed earlier, one of the greatest possible benefits of this method is that we can use

the solution at a coarse grid as the initial solution for an iterative method on a finer grid. We

313

incorporate this idea by starting at the coarsest grid, G[1], to construct a solution for the starting

vector onG[2]. That is, if at the end of a few iterations onG[1], we have an approximation, u1new ,

we use this for the initial vector, u2[0]
for the iterative method onG[2]. We run a few iterations on

G[2] to construct u2[new]
, which can be used as the initial vector, u3[0]

, on G[3], etc. Once we get

to our finest grid (G[4] in our example), we run a few iterations to remove the highest frequency

components of our residual as described above. Then, we travel back down to the coarser grid,

and so on.

The full Multigrid Method or Full Multigrid V-Cycle involves using a series of V-cycles as

seen in figure A.26. This idea can be described as nested iteration (Hackbusch and Trottenberg,

1982; Hackbusch, 1985; Iserles, 1996; Demmel, 1997).

Time

●❬✐❪

✸

✷

✶

✹

Figure A.26: A full Multigrid V-cycle often seen for constructing a solution to a system of linear

equations. We begin at the coarsest grid, G[1] to construct an initial solution for the iterative

method used on G[2] and so on. We move up and down the hierarchy of grids to smooth the high

frequencies from the residuals.

A high-level pseudocode algorithm for the full multigrid method is provided in (Demmel,

1997). As would be apparent, solving a problem such as the Poisson equation, using a basic

314

system of equations from a finite-difference approximation and a full Multigrid Method with a

classic iterative method such as Gauss-Seidel would be relatively straightforward. (Iserles, 1996;

Demmel, 1997) show example errors for V-cycles of various sizes.

Additionally, parallelizing the Multigrid technique is what has made it such a powerful and

useful tool in numerical analysis. In this case, we can break each grid into a series of sub-grids,

where a single processor maintains control over that sub-grid in each of the grids in the hierarchy

(Hackbusch, 1985). For a sparse system such as one derived from the five-point approximation

to the Poisson equation on a fine grid of size n × n, Multigrid has been shown to run in O(n)

time on a single processor, and O(log2(n)) time in parallel on n processors (Demmel, 1997).

A.5.4 Fourier Transforms

We review how Fourier Transforms work and how they can be quickly computed for the purposes

of solving systems of linear equations as generated for solving problems such as the Poisson

equation.

Fourier Transforms and Their Discrete Representations

There are many sources for discussions of Fourier transforms and inverses, specifically their

purposes in Computer Science, including (Aho et al., 1974; Iserles, 1996; Demmel, 1997), and

we give a brief introduction to discrete Fourier transforms based on these sources.

We will be using i to indicate
√
−1 over the complex numbers,=. For some element, ω ∈ R,

we say that ω is an n principal root of unity if (Ahlfors, 1979):

ω 6= 1

ωn = 1
n−1∑
j=0

ωjp = 0, 1 ≤ p ≤ n.

315

The general n roots of unity are {1, ω, ω2, ..., ωn−1}. Based on Euler’s identity expix =

cosx + i sinx, a classic example of a principal nth root of unity over the complex field, C, is

exp
2πi
n .

If a vector, x ∈ Rn, d ∈ Z is of the form, x [x0, x1, ..., xn−1]T , its DFT, or discrete Fourier

transform, is the vector, y = [y0, y1, ..., yn−1]T , formed by the following formula:

yk =
n−1∑
l=0

xlω
−kl, 0 ≤ k ≤ n− 1, ω = exp−

2πi
n . (A.27)

Construct the original sequence by using the inverse discrete Fourier transform or IDFT:

xl =
1

n

n−1∑
k=0

ykω
kl, 0 ≤ l ≤ n− 1, ω = exp−

2πi
n . (A.28)

The power of the DFT and IDFT become obvious when we consider the ubiquity of Fourier

transforms in mathematical analysis. For a continuous function, f , periodic in the interval,

[−L,L], its expansion into an infinite series of since and cosines is its Fourier series representa-

tion (Guenther and Lee, 1988):

f(x) =
∞∑

j=−∞
γj exp

iπjx
L

γj =

L∫
−L

f(x)exp−
iπjx
L dx, j = 0, 1, 2, ...

Take the limit L→∞ to get the Fourier transform (Demmel, 1997),

Fj(x) =

∞∫
−∞

f(x)exp−
iπjx
L dx

and its inverse,

fj(x) =

∞∫
−∞

F (x)exp
iπjx
L dx.

316

The DFT and IDFT in equations A.27 and A.28 are exactly that: discrete representations

of the continuous Fourier transforms, allowing us to numerically calculate them via quadrature.

Returning to DFTs, define the discrete sine transform:

yk = 2

n−1∑
l=1

xl sin
πkl

n
, 0 ≤ k ≤ n− 1. (A.29)

Using basic complex analysis techniques (Ahlfors, 1979), rewrite equation A.29 as seen in

(McLean, 2004):

sin
πkl

n
=
ω̂
kl
2 − ω̂−

kl
2

2i
, ω̂ = exp

2πi
n′ , n′ = 2n

⇒ −iyk = 2

n−1∑
l=1

xl

(
ˆω−kl − ω̂kl

)
, 0 ≤ k ≤ n− 1.

Let j = 2n− l⇒ ω̂kl = ˆω2nk−kj = ˆω−kj . Therefore,

n−1∑
l=1

xlω̂kl =
2n−1∑
j=1

x2n−j
ˆω−kl

⇒ yk =

2n−1∑
l=0

zl
ˆω−kl where

zl =

0 if l = 0 or l = n

ixl if 1 ≤ l ≤ n− 1

−ix2n−1 if n+ 1 ≤ l ≤ 2n− 1

After all of this, we still haven’t addressed the question as to why someone would want

to use a DFT for anything. To see why, we introduce the idea of convolutions. In the typical

Fourier transform sense, for two smooth continuous functions, f and g, the convolution (f ∗ g)

is (Demmel, 1997):

317

(f ∗ g)(x) =

∞∫
−∞

f(x− y)g(y)dy (A.30)

We can state the discrete form of equation A.30 as:

If a,b ∈ R2n then a ∗ b = c where ck =
k∑
j=0

ajbk−j (A.31)

The Convolution Theorem provides a powerful result. The proof of this is straightforward

and left to (Aho et al., 1974; Demmel, 1997).

Theorem A.8. (Convolution Theorem) Let a = [a0, ..., an−1, 0, ..., 0]T , b = [b0, ..., bn−1, 0, ..., 0]T

∈ R2n. Further, letF (a) andF (b) be the DFTs of a and b. Then, for c = a∗b = [c0, ..., c2n−1]T ,

F (c) = F (a) ∗ F (b). Further, if F−1(·) is the IDFT of F (·), then, c = F−1(F (a) · F (b))

We can now compute the product of two vectors using DFTs and IDFTs. This may seem

to be a waste of time since it would seem that computing the DFT of a vector of size n would

involve n summations of n terms, implying O(n2) total operations. But, there is a fast way

of computing the DFT, known as the FFT or fast Fourier transform which lowers this time to

O(n log n).

Fast Fourier Transforms and Various Implementations

There are a variety of algorithms for constructing the Fast Fourier Transform (FFT) (Press et al.,

1992). We look at a high-level overview from (Demmel, 1997), showing how speed-up is possi-

ble using recursion even though recursion is not used for the better FFT implementations.

From (Demmel, 1997), imagine we want to calculate
n−1∑
j=0

αjx
j at the discrete points, ωk,

k = 0, ..., n. Write α(x) as:

318

α(x) = aα0 + α1x+ α2x
2 + ...+ αn−1x

n−1

= (α0 + α2x
2 + ...) + x(α1 + α3x

2 + ...)

= αe(x
2) + xαo(x

2)

Here, αe represents all even coefficients of α and αo all odd coefficients. So, we are evaluat-

ing two polynomials of size n
2 −1 at the discrete points ω2k. Continue doing this recursively in a

divide and conquer approach, using Algorithm 14 from (Demmel, 1997) (assume for simplicity

that α(x) is of length 2m):

Algorithm 14 (RFPE) Recursive FFT Polynomial Evaluation for input vector α of size n
b = V ector(n

2
− 1)

if n == 1 then

RETURN α

else

α̂e = RFPE(αe(
n
2

))

α̂o = RFPE(αo(
n
2

))

ω = exp−
2πi
n

for j = 0 to n
2
− 1 do

b[j] = ωj

end for

for j = 0 to n
2
− 1 do

α̂[j] = âe[j] + b[j]α̂o[j]

α̂
[
n
2

+ j
]

= âe
[
n
2

+ j
]

+ b
[
n
2
− j
]
α̂o
[
n
2

+ j
]

end for

RETURN α̂

end if

The recursion equation for the number of operations for a problem of size n can be written

as T (n) = 2T
(
n
2

)
+ 3n

2 , T (1) = 1. Using domain and range transformations (Siegel and Cole,

319

1999), T (n) = 3n
2 lg(n).

Most FFT implementations do not use recursion; instead, they use nested loops to achieve

speed on the order of O(nlg(n)) operations. Further, the fastest implementations place the input

into bit-reversed order (Press et al., 1992; Demmel, 1997). The most popular and adapted of

these algorithms seems to be the Cooley-Tukey algorithm (Cooley and J.W.Tukey, 1998) and its

many variations. Going into the details of the bitwise manipulations of these fast implementa-

tions can be seen in these and other publications.

A variety of code versions of the FFT are available in (Press et al., 1992) and its online

versions. Further, Netlib’s FFTPACK, based on (Swartztrauber, 1982), contain a variety of For-

tran FFT codes. FFTPACK appears to have been popular for a while, used in software such as

MATLAB. However, recent years have seen the introduction of the Fastest Fourier Transform in

the West (FFTW) (Frigo and Johnson, 1997). FFTW is based on the Cookey-Turkey algorithm

and has been shown via benchmarks to provide the fastest implementation on a variety of plat-

forms; these benchmarks can be seen in the papers (Frigo and Johnson, 1998) and most recently

in (Frigo and Johnson, 2005), showing recent upgrades to the FFTW. The FFTW has become

the de facto fast implementation, the code being publicly available, and MATLAB now bases its

FFT code on the FFTW.

FFTs Applied to the Poisson Equation

Here we discuss a specific example for a two dimensional Poisson problem, discretized using a

five point approximation scheme on a regular square grid. Much of this discussion is an expan-

sion on section 1.1. We begin by assuming we are solving the 2D Dirichlet Poisson problem on

a easily discretized grid (rectangular or circular for example):

−∆u = f in Ω ⊂ R2

320

u = 0 on ∂Ω.

Specifically, we are solving this problem on a space which is easily discretized in the x and

y directions such that dx = dy. For example, let Ω∪∂Ω represent a unit square. If we discretize

our space into an n× n grid, we can evaluate ∂2u
∂x2 at the (i, j)th point as

∂2ui,j
∂x2

≈ ui−1,j − 2ui,j + ui+1,j

h2

LetU be the n×nmatrix whose entries are the variables, ui,j , and T be the symmetric matrix

of coefficients used to discretize ∂2ui,j
∂x2 above. Then, T is just the 1D matrix of coefficients for

the 1D Poisson Equation:

T =

2 −1

−1 2 −1

−1 2 −1

.

−1 2 −1

−1 2 −1

−1 2

T is a Toeplitz matrix. A Toeplitz matrix is one whose entries are constant along each diago-

nal. Further, T is symmetric and tridiagonal. A Toeplitz symmetric tridiagonal matrix is referred

to as TST (Iserles, 1996). TST matrices, as we will see, have many benefits, derived from their

convenient form. Rewrite ∂2u
∂x2 as the product

− 1

h2
(TU)

Perform a similar derivation for ∂
2u
∂y2 and let B be the matrix where the (i, j)the entry of B is

bi,j = −h2fi,j and rewrite the Poisson equation.

321

TU + UT = B (A.32)

Returning to TST matrices, we use the following Lemma, proved in (Iserles, 1996):

Theorem A.9. (TST Theorem) If T is a TST matrix of size n×n, with entries α along the main

diagonal and β along both diagonals one away from the main diagonal, then T has eigenvalues,

λj = α + 2β cos
(

πj
n+1

)
. Further, each eigenvalue has a corresponding eigenvector, qj where

qj,k =
(√

2
n+1

)
sin
(
πjk
n+1

)
. Here, j = 1, 2, ..., n.

The power of this lemma is that we can write T as QΛQT where Λ is the diagonal matrix

of eigenvalues, λj and Q is an orthonormal matrix of eigenvectors, qj , where Q−1 = QT = Q

(⊂ R for our example). Rewrite the discretized equation A.32 as

(QΛQT)U + U(QΛQT) = B

⇒ QT (QΛQT)UQ+QTU(QΛQT)Q = QTBQ

⇒ Q(QΛQ)UQ+QU(QΛQ)Q = QBQ

⇒ ΛÛ + ÛΛ = B̂ where (̂·) = Q(·)Q

⇒ (ΛÛ + ÛΛ)j,k = λj ûj,k + ûj,kλj = b̂j.k

⇒ ûj,k =
b̂j,k

λj + λk

Therefore, a straightforward algorithm for solving the 2D Dirichlet Poisson problem would

be (Demmel, 1997):

1. Compute QBQ

2. Compute ûj,k =
b̂j,k

λj + λk
∀ j, k

3. Compute U = QÛQ

322

The second step involves O(n2) operations, and the first and third steps involve matrix mul-

tiplications, which would seem slow at O(n3) operations for a straightforward method. There

are several algorithms which speed up dense matrix-matrix multiplications (Aho et al., 1974),

but remember Λ and Q have the special structure derived from T being a TST matrix. Using

fast Fourier transforms, in fact, Q times a vector involves O(nlogn) operations, and Q times a

matrix takes O(n2logn) operations. So, notice

exp

(
−πijk
n+ 1

)
= cos

πjk

n+ 1
− i sin

πjk

n+ 1
.

This implies the entries of Q are just the imaginary parts of a complex exponential times

−
√

2
n+1 . However, the left-hand side of the above equation looks similar to the DFT. In fact,

if Φ is a (2n + 2) × (2n + 2) matrix whose (j, k)th entry is exp
(
−2πijk
2n+2

)
= exp

(
−πijk
n+1

)
,

then if multiplication by Φ can be sped up using fast versions of the DFT, then we can also use

the speed-up to multiply by Q. To see this further, notice that using MATLAB-like notation,

Q = Imaginary (Φ(1 : n, 1 : n)). That is, Q is the first n rows and columns of the imaginary

part of Φ. Therefore, for some vector, v ∈ Rn and v̄ = [0, vT , 0 ∗ vT]T ∈ R2n+1,

Qv = Imaginary ((Φ ∗ v̄)(1 : n)) .

Assuming that we have an algorithm called FFT which can quickly compute the DFT of

a matrix, D, we can now write the following pseudocode to solve a simple Dirichlet Poisson

problem on a regular grid, first showing Algorithm 15 for the Fast Sine Transform, and the full

solver in Algorithm 16 (Demmel, 1997).

The pseudocode algorithm above takes some unnecessary steps in order to be more explicit,

such as computing the matrix LL; other parts of the code can be sped up using memory storage

exploitation (this is straightforward in MATLAB). Additionally, in order to use the complex part

of the Fourier transform, we can compute the use FFTs to compute the discrete sine transform.

323

Algorithm 15 (FST) Fast Sine Transform on Matrix D of size n×m
z = zero-vector of length m

D1 = [z;D] (A new matrix whose first row is z and 2nd to m+ 1st rows are D)

for j = 1 to n+ 1 do

D1 = [D1; z] (Append n+ 1 rows of zeros - can be done in O(1))

end for

D2 = Im(FFT (D1)) (Imaginary part of the FFT of D1)

RETURN D2(2 : n+ 1, :) (The 2nd to n+ 1st rows of D2)

Algorithm 16 FFT Poisson Solver
L = V ector(n) (Vector of eigenvalues - diagonal(Λ))

LL = Matrix(n, n) (Will store reciprocal sums of L)

U = V ector(n)

temp = 2
n+1

for j = 1 to n do

L[j] = 2− 2
(

cos jn
n+1

)
end for

for j = 1 to n do

for k = 1 to n do

LL(j, k) = temp
L(j)+L(k)

end for

end for

U = FST (BT)

U = FST (XT)

for j = 1 to n do

for k = 1 to n do

U(j, k) = LL[j, k]U [j, k]

end for

end for

U = FST (UT)

U = FST (UT)

324

Despite the inefficiencies of the above algorithm, we can see how the FFT allows us to more

quickly compute the multiplications.

(Iserles, 1996) explains a similar yet slightly different approach to an FFT-based method,

known as the Hockney method. In the Hockney method, we assume that for the system of linear

equations Au = b, A is a block-TST matrix as discussed in section 1.1. As a summary of the

discussion there, the Hockney method involves the following steps:

1. Form B̂ = QB, or b̂j = Qbj for each j = 1, ...n

2. Change to B̂T whose columns are b̂tj , the rows of B̂

3. Solve Γj û
t
j = b̂tj via band Cholesky for j = 1, ..., n

4. Change back to Û from ÛT

5. Set U = QÛ or uj = Qûj for j = 1, ..., n

Cyclic Reduction

We mention another method, known as cyclic reduction, cyclic odd-even reduction and block

cyclic reduction. Cyclic reduction is a generalization of the Hockney method for the FFT Pois-

son solver. Many sources exist for discussion of cyclic reduction including (Buzbee et al., 1969;

Buzbee et al., 1970; Swartztrauber, 1974), the latter more explicitly applied to the Poisson equa-

tion. A general overview of cyclic reduction compared to FFTs can be seen in (Swartztrauber

and Sweet, 1996).

For an n× n system, Au = b, pick the jth row and multiply it by −A and then add it to the

j − 1st and j + 1st row to get the following result:

325

+uj−2 +Auj−1 +uj = bj−1

+(−A)∗ (+uj−1 +Auj +uj+1 = bj−2)

+ +uj +Auj+1 +uj+2 = bj+1

⇒ uj−2 + (2I −A2)uj + uj−2 = bj−1 −Abj + bj+2

Repeat the above process for every third set of equations. Setting Ã = 2I − A2 and b̃j =

bj−1 −Abj + bj+1, we get a new system in which

Ã I

I Ã I

I Ã I

.

I Ã I

I Ã I

I Ã

u2

u4

...

un−3

un−1

=

b̃2

b̃4
...

b̃n−3

b̃n−1

.

We have reduced the number of unknowns by half (Swartztrauber and Sweet, 1996). Repeat

this recursively until we have reduced the number of unknowns to 1 (we assume that n = 2m−1).

Once the base equation is solved, work backwards to solve a series of equations to build the

final result. Algorithms for this process can be seen in (Press et al., 1992; Demmel, 1997). We

reproduce the pseudocode here from (Demmel, 1997) in Algorithm 17. Let n0 = 2j+1−1, nr =

2j+1−r − 1, A(0) = A, A(r) = 2I − (A(r−1))2, b(0)
j = bj , b

(r)
j = b

(r−1
2j−1)−A(r)b

(r−1
2j) + b

(r−1
2j+1).

Further γ is considered a stopping point for the iteration.

Unfortunately, this algorithm is numerically unstable as the matrices, A(r) grow exponen-

tially as r grows (Swartztrauber and Sweet, 1996). Hence, b(r)j loses all of its numerical sig-

326

Algorithm 17 Block Cyclic Odd-Even Reduction for matrix A of size n× n, vector b of size n, γ
for r = 0 to γ − 1 do

Compute A(r+1)

for k = 1 to nr+1 do

Compute b(r+1)
k

end for

end for

Solve A(γ)u(γ) = b(γ) using direct or iterative method

for r = γ − 1 to 0 do

for k = 1 to nr+1 do

u
(r)
2k = u

(r+1)
k

end for

for k = 1 to nr do

Solve A(r)u
(r)
k = b

(r)
k − u

(r)
k−1 − u

(r)
k+1 using direct or iterative method

u
(r)
k+1 and u(r)

k−1 are either known from the previous step or are known boundary conditions

end for

end for

RETURN u(0)

327

nificance. Fortunately, (Buneman, 1969) provides a way of stabilizing the system by assuming

b
(r)
j = A(r)p

(r)
j + q

(r)
j , where the p’s and q’s are developed via additional recurrence relations.

(Buzbee et al., 1970; Buzbee et al., 1971) use this variation applied directly to the Poisson equa-

tion.

If we begin with n = 2m − 1, we solve n(m + 1) = nlg(n) + n tridiagonal systems

(Swartztrauber and Sweet, 1996), which using band Cholesky can be solved in O(m) operations

for m < n. Therefore, cyclic reduction, in theory, is quite fast. However, in practice, using

the stabilization method of (Buneman, 1969; Swartztrauber and Sweet, 1996) claims that cyclic

reduction is slower than FFTs for a Poisson problem.

328

BIBLIOGRAPHY

Adams, M. (1998). Multigrid Equation Solvers for Large-Sale Nonlinear Finite Element Simu-

lations. Ph.d. thesis, University of California, Berkeley, Berkeley, CA.

Adams, M. F. (2004). Algebraic multrigrid methods for constrained linear systems with applica-

tions to contact problems in solid mechanics. Numerical Linear Algebra with Applications,

11(2-3):141–153.

Adams, M. F., Bayraktar, H., Keaveny, T., and Papadopoulos, P. (2004). Ultrascalable implicit

finite element analyses in solid mechanics with over a half a billion degrees of freedom. In

ACM/IEEE Proceedings of SC 2004: High Performance Networking and Computing.

Adams, M. F., Brezina, M., Hu, J. J., and Tuminaro, R. S. (2003). Parallel multigrid smoothing:

polynomial versus Gauss-Seidel. Journal of Computational Physics, 188(2):593–610.

Adams, M. F. and Demmel, J. (1999). Parallel multigrid solver algorithms and implementations

for 3D unstructured finite element problem. In ACM/IEEE Proceedings of SC 1999: High

Performance Networking and Computing, Portland, Oregon.

Aftosmis, M., Berger, M., and Melton, J. (1998). Adaptive Cartesian mesh generation. In

Thompson, J., editor, The Handbook of Grid Generation, pages 22–1–22–26. CRC Press.

Ahlfors, L. (1979). Complex Analysis. McGraw-Hill, 3rd edition.

Aho, A., Hopcroft, J., and Ullman, J. (1974). The Design and Analysis of Computer Algorithms.

Addison-Wesley.

Anderson, C. (1986). A method of local corrections for computing the velocity field due to a

distribution of vortex blobs. Journal of Computational Physics, 62(1):111–123.

329

Aslam, T. (2003). A partial differential equation approach to multidimensional extrapolation.

Journal of Computational Physics, 193:349–355.

Atkinson, K. (1997). The Numerical Solution of Integral Equations of the Second Kind: Volume

4 of Cambridge Monographs on Applied and Computational Mathematics. Cambridge

University Press.

Baker, C. (1977). The Numerical Treatment of Integral Equations: Monographs on Numerical

Analysis. Clarendon Press, Oxford.

Balls, G. and Colella, P. (2002). A finite difference domain decomposition method using lo-

cal corrections for the solution of Poisson’s equation. Journal of Computational Physics,

180(1):25–53.

Barnes, J. and Hut, P. (1986). A hierarchical O(N log N) force calculation algorithm. Nature,

324:446–449. Technical report.

Beatson, R. and Greengard, L. (1997). A short course on fast multipole methods. In Ainsworth,

M. et al., editors, Wavelets, multilevel methods and elliptic PDEs, pages 1–37, Walton

Street, Oxford OX2 6DP, UK. Oxford University Press.

Berger, M., Aftosmis, M., and Melton, J. (1996). Accuracy, adaptive methods and complex

geometry. In 1st AFOSR Conference on Dynamic Motion CFD.

Berger, M. and Colella, P. (1989). Local adaptive mesh refinement for shock hydrodynamics.

Journal of Computational Physics, 82:64–84.

Berger, M. and Oliger, J. (1984). Adaptive mesh refinement for hyperbolic partial differential

equations. Journal of Computational Physics, 53:484–512.

330

Berman, C. and Greengard, L. (1994). A renormalization method for the evaluation of lattice

sums. Journal of Mathematical Physics, 35(6036–6049).

Berntsen, J., Espelid, T. O., and Genz, A. (1991). Algorithm 698; dcuhre: an adaptive multide-

mensional integration routine for a vector of integrals. ACM Trans. Math. Softw., 17(4):452–

456.

Bloomenthal, J. (1994). An implicit surface polygonizer. Graphics Gems, 4:324–349.

Börm, S. (2006). H2-matrix arithmetics in linear complexity. Computing, 77(1):1–28.

Börm, S. and Hackbusch, W. (2005). Hierarchical quadrature for singular integrals. Computing,

74(2):75–100.

Boschitsch, A., Fenley, M., and Olson, W. (1999). A fast adaptive multipole algorithm for

calculating screened coulomb (yukawa) interactions. Journal of Computational Physics,

151:212–241.

Braess, D. (2001). Finite Elements: Theory, Fast Solvers and Applications in Solid Mechanics.

Cambridge University Press, 2nd edition.

Brandt, A. (1977). Multilevel adaptive solutions to boundary value problems. Math. Comp.,

31:333–390.

Brebbia, C., Telles, J., and Wrobel, L. (1984). Boundary element techniques. Springer-Verlag,,

Berlin.

Brezina, M., Falgout, R., MacLachlan, S., Manteuffel, T., McCormicj, S., and Ruge, J. (Sub-

mitted September 7, 2004a). Adaptive algebraic multigrid. SIAM Journal on Scientific

Computing.

331

Brezina, M., Tong, C., and Becker, R. (Submitted for Publication. Also available as LLNL Tech-

nical Report UCRL-JRNL-204167, 2004b). Parallel algebraic multigrids for structural me-

chanics. SIAM Journal on Scientific Computing.

Briggs, L., Emden Henson, V., and McCormick, S. F. (2000). A Multigrid Tutorial. SIAM,

Philadelphia.

Bruno, O. P. and Kunyansky, L. A. (2001). A fast, high-order algorithm for the solution of surface

scattering problems: Basic implementation, tests, and applications. Journal of Computa-

tional Physics, 169:80–110.

Buneman, O. (1969). A compact non-iterative Poisson solver. Technical Report 294, Institute

for Plasma Research, Stanford University, Stanford, CA.

Buzbee, B., Golub, G., and Nielson, C. (1969). The method of odd/even reduction and factor-

ization with application to Poisson’s equation. Technical Report CS-TR-69-128, Stanford

University, Department of Computer Science.

Buzbee, B., Golub, G., and Nielson, C. (1970). On direct methods for solving Poisson’s equation.

SIAM Journal on Numerical Analysis, 7:627–656.

Buzbee, B., Golub, G., and Nielson, C. (1971). The direct solution of the discrete Poisson

equation on irregular regions. SIAM Journal on Numerical Analysis, 8:722–736.

Canuto, C., Hussaini, M. Y., Quarteroni, A., and Zang, T. A. (1987). Spectral Methods in Fluid

Dynamics. Springer–Verlag, New York.

Chan, T., Glowinski, R., Périaux, J., , and Widlund, O. (1989). Domain decomposition Methods.

SIAM, Philadelphia.

332

Chan, T. and Smith, B. (1994). Domain decomposition and multigrid algorithms for elliptic

problems on unstructured meshes. Electron. Trans. Numer. Anal., 1994:171–182.

Chapman, B., Jost, G., and Pas, R. (2007). Using OpenMP: Portable Shared Memory Parallel

Programming (Scientific and Engineering Computation). The MIT Press.

Chen, G. and Zhou, J. (1992). Boundary Element Methods. Academic Press Limited, London.

Cheng, H., Crutchfield, W., Gimbutas, Z., Greengard, L., Ethridge, J., Huang, J., Rokhlin, V.,

Yarvin, N., and Zhao, J. (2006a). A wideband fast multipole method for the Helmholtz

equation in three dimensions. Journal of Computational Physics, 216:300–325.

Cheng, H., Greengard, L., and Rokhlin, V. (1999). A fast adaptive multipole algorithm in three

dimensions. Journal of Computational Physics, 155:468–498.

Cheng, H., Huang, J., and Leiterman, T. J. (2006b). An adaptive fast solver for the modified

Helmholtz equation in two dimensions. Journal of Computational Physics, 211(2):616–

637.

Cheng, L., Fedkiw, R., Gibou, F., and Kang, M. (2001). A second order accurate symmetric

discretization of the Poisson equation on irregular domains. Journal of Computational

Physics, 176:205–227.

Chesshire, G. and Henshaw, W. (1991). Composite overlapping meshes for the solution of partial

differential equations. Journal of Computational Physics, 90:1–64.

Chorin, A. and Marsden, J. (1993). A Mathematical Introduction to Fluid Dynamics. Springer-

Verlag, 3rd edition.

Cooley, J. and J.W.Tukey (1998). An algorithm for the machine computation of the complex

fourier series. Mathematics of Computation, 19:297–301.

333

Cottet, G.-H. and Koumoutsakos, P. (2000). Vortex Methods, Theory and Practice. Cambridge

University Press, 1st edition.

Demmel, J. (1996). Fast hierarchical methods for the n-body problem,

part 1: http://www.cs.berkeley.edu/ demmel/cs267/lecture26/lecture26.html.

http://www.cs.berkeley.edu/ demmel/cs267/lecture25/lecture25.html.

Demmel, J. (1997). Applied Numerical Linear Algebra. SIAM.

Elman, H., Silvester, D., and Wathen, A. (2005). Finite Elements and Fast Iterative Solvers.

Oxford University Press, 1st edition.

Ethridge, F. (2000). Fast Algorithms for Volume Integrals in Potential Theory. Ph.d. thesis, New

York University, New York, NY.

Ethridge, F. and Greengard, L. (2001). A new fast-multipole accelerated Poisson solver in two

dimensions. SIAM Journal on Scientific Computing, 23(3):741–760.

Fedkiw, R., Aslam, T., Merriman, B., and Osher, S. (1999). A non-oscillatory eulerian approach

to interfaces in multimaterial flows. Journal of Computational Physics, 152:457–492.

Fournier, A. and Montuno, D. (1984). Triangulating simple polygons and equivalent problems.

ACM Transactions on Graphics, 3:153–174.

Frigo, M. and Johnson, S. (1997). The fastest fourier transform in the west.

http://theory.lcs.mit.edu/ fftw/fftw-paper.ps.gz.

Frigo, M. and Johnson, S. (1998). Fftw: An adaptive software architecture for the fft. ICASSP

Conference Proceedings, 3:1381–1384.

Frigo, M. and Johnson, S. (2005). The design and implementation of fftw3. Proceedings of the

IEEE, 93(2):216–231.

334

Gibbon, P. and G.Sutmann (2002). Long-Range Interactions in Many-Particle Simulations in

Quantum Simulatinos of Complex Many-Body Systems From Theory to Algorithms NIC

Series Volume 10, pages 467–506. John von Neumann Institute for Comuting, Jülich.

Gingold, R. and Monaghan, J. (1977). Smoothed particle hydrodynamics - theory and applica-

tion to non-spherical stars. Monthly Notices of the Royal Astronomical Society, 181:375–

389.

Greengard, L. (1988). The Rapid Evaluation of Potential Fields in Particle Systems: ACM

Distringuished Dissertation. MIT Press.

Greengard, L. (1994). Fast algorithms for classical physics. Science, 265(5174):909–914.

Greengard, L. and Huang, J. (1999). A fast direct solver for elliptic partial differential equations

on adaptively refined meshes. SIAM Journal on Scientific Computing, 21:1551–1566.

Greengard, L. and Huang, J. (2002). A new version of the fast multipole method for screened

coulomb interactions in three dimensions. Journal of Computational Physics, 180:642–658.

Greengard, L., Kropinski, M., and Mayo, A. (1996). Integral equation methods for Stokes flow

and isotropic elasticity in the plane. Journal of Computational Physics, 125:403–414.

Greengard, L. and Lee, J. (1996). A direct adaptive Poisson solver of arbitrary order accuracy.

Journal of Computational Physics, 125:415–424.

Greengard, L. and Rokhlin, V. (1987). A fast algorithm for particle simulations. Journal of

Computational Physics, 73:325–348. This paper is credited as the origin of the fast multi-

pole method, with an O(N) algorithm. It was reprinted in the same journal, vol. 135, pp.

280–292, August 1997.

335

Greengard, L. and Rokhlin, V. (1988). The rapid evaluation of potential fields in three dimen-

sions. In Anderson, C. and Greengard, C., editors, Vortex Methods, Lecture Notes in Math-

ematics. Springer Verlag, N.Y.

Greengard, L. and Rokhlin, V. (1997). A new version of the fast multipole method for the

Laplace equation in three dimensions. Acta Numerica, 6:229–269.

Guenther, R. and Lee, J. (1988). Partial Differential Equations of Mathematical Physics and

Integral Equations. Dover.

Gumerov, N. and Duraiswami, R. (2006). Fast multipole method for the biharmonic equation in

three dimensions. Journal of Computational Physics, 215:363–383.

Hackbusch, W. (1985). Multigrid Methods and Applications. Springer, 1st edition.

Hackbusch, W. (1995). Integral Equations: Volume 120 of the International Series of Numerical

Mathematics. Birkhauser Verlag, translated and revised from 1989 german original edition.

Hackbusch, W. (1999). A sparse matrix arithmetic based on h-matrices. part i: introduction to

h-matrices. Computing, 62(2):89–108.

Hackbusch, W. and Börm, S. (2002). H2-matrix approximation of integral operators by interpo-

lation. Appl. Numer. Math., 43(1-2):129–143.

Hackbusch, W. and Nowak, Z. (1989). On the fast matrix multiplication in the boundary element

method by panel clustering. Numerische Mathematik, 54(4):463–491.

Hackbusch, W. and Trottenberg, U. (1982). Multigrid Methods, Lecture Notes in Mathematics

Volume 960. Springer-Verlag, 1st edition.

336

Helsing, J. (1994). Fast and accurate calculations of structural parameters for suspensions.

Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,

445:127–140.

Hockney, R. and Eastwood, J. (1981). Computer Simulation Using Particles. McGraw-Hill, NY.

Hunter, P. and Pullan, A. (2002). Fem/bem notes.

http://www3.esc.auckland.ac.nz/people/staff/apul001/publications.html.

Iserles, A. (1996). Numerical Analysis of Differential Equations. Cambridge University Press,

1st edition.

Johansen, H. and Colella, P. (1998). A Cartesian grid embedded boundary method for Poisson’s

equation on irregular domains. Journal of Computational Physics, 147:60–85.

Johnson, C. (1987). Numerical Solution of Partial Differential Equations by the Finite Element

Method. Cambridge University Press.

Kellogg, O. (1967). Foundations of Potential Theory. Springer-Verlag.

Kress, R. (1989). Linear Integral Equations: Applied Mathematical Sciences 82. Springer-

Verlag.

Kress, R. (1999). Linear Integral Equations: Applied Mathematical Sciences 82. Springer-

Verlag, 2nd edition.

Ladyzhenskaya, O. (1964). The Mathematical Theory of Viscous Incompressible Flow. Gordon

and Breach, 2nd edition.

Langston, M., Greengard, L., and Zorin, D. (2011). A free-space adaptive fmm-based pde solver

in three dimensions. Communications in Applied Mathematics and Computational Science,

6(1):79–122.

337

Lashuk, I., Chandramowlishwaran, A., Langston, M., Nguyen, T., Sampath, R., Shringarpure,

A., Vuduc, R., Ying, L., Zorin, D., and Biros, G. (2009). A massively parallel adaptive

fast-multipole method on heterogeneous architectures. In Proceedings of the ACM/IEEE

Conference on High Performance Computing, SC 2009, November 14-20, 2009, Portland,

Oregon, USA, Portland, OR. IEEE/ACM SIGARCH.

Lischinski, D. (1994). Incremental delauney triangulation. Graphics Gems, 4:47–59.

Liu, X.-D., Fedkiw, R. P., and Kang, M. (2000). A boundary condition capturing method for

Poisson’s equation on irregular domains. Journal of Computational Physics, 160:151–178.

Lucy, L. (1977). A numerical approach to the testing of the fission hypothesis. Astronomical

Journal, 82:1013–1024.

Majda, A. and Bertozzi, A. (2002). Vorticity and Incompressible Flow. Cambridge University

Press.

Martin, D. (1998). An Adaptive Cell-Centered Projection Method for the Incompressible Euler

Equations. Ph.d. thesis, University of California, Berkeley, Berkeley, CA.

Martin, D. and Cartwright, K. (1996a). Amr Poisson code.

http://seesar.lbl.gov/anag/staff/martin/AMRPoisson.html.

Martin, D. and Cartwright, K. (1996b). Solving Poisson’s equations using adaptive mesh refine-

ment. Technical Report M96/66, University of California, Berkeley Electronic Research

Laboratory.

Mavripilis, D. (1997). Unstructured grid techniques. Annual Review of Fluid Mechanics,

29:473–514.

338

Mayo, A. (1984). The fast solution of Poisson’s and the biharmonic equations on irregular

regions. SIAM Journal on Numerical Analysis, 21(2):285–299.

Mayo, A. (1985). Fast high order accurate solution of Laplace’s equation on irregular regions.

SIAM Journal on Scientific Computing, 6(1):144–157.

Mayo, A. and Greenbaum, A. (1992). Fast parallel iterative solution of Poisson’s and the bihar-

monic equations on irregular regions. SIAM Journal on Scientific Computing, 13(1):101–

118.

McCorquodale, P., Colella, P., Balls, G., and Baden, S. (2007). A local corrections algorithm for

solving Poisson’s equation in three dimensions. Communications in Applied Mathematics

and Computational Science, 2(1):57–81.

McKenney, A., Greengard, L., and Mayo, A. (1995). A fast Poisson solver for complex geome-

tries. Journal of Computational Physics, 118:348–355.

McLean, W. (2004). Poisson solvers. http://www.cs.northwestern.edu/ jet/.

Mikhlin, S. (1964). Integral Equations and Their Applications to Certain Problems in Mechan-

ics, Mathematical Physics and Technology. Pergamon Press, MacMillian Company, NY,

NY, 2nd: translated from russian by a.h. armstrong edition.

Minion, M. (1999). A projection method for locally refined grids. Journal of Computational

Physics, 148(1):81–124.

Monaghan, J. (1992). Smoothed particle hydrodynamics. Annual Review of Astronomy and

Astrophysics, 30(1):543–574.

Osher, S. and Fedkiw, R. (2002). Level Set Methods and Dynamic Implicit Surfaces. Springer,

Berlin.

339

Peskin, C. S. (1977). Numerical analysis of blood flow in the heart. Journal of Computational

Physics, pages 200–252.

Peskin, C. S. and McQueen, D. M. (1989). A three-dimensional computational method for blood

flow in the heart. I: Immersed elastic fibers in a viscous incompressible fluid. Journal of

Computational Physics, 81:372–405.

Peskin, C. S. and Prinz, B. (1993). Improved volume conservation in the computation of flows

with immersed elastic boundaries. Journal of Computational Physics, 105:113–132.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992). Numerical Recipes

in C, 2nd. edition. Cambridge University Press.

Rayleigh, L. (1892). On the influence of obstacles arranged in rectangular order upon the prop-

erties of a medium5a. Philosophical Magazine, 34:481–502.

Rodin, G. and Overfelt, J. (2004). Periodic conduction problems: The fast multipole method

and convergence of integral equations and lattice sums. The Royal Society Proceedings:

Mathematical, Physical and Engineering Sciences, 460(2050):2883–2902.

Rokhlin, V. (1985). Rapid solution of integral equations of classical potential theory. Journal of

Computational Physics, 60:187–207.

Rokhlin, V. (1990). Rapid solution of integral equations of scattering theory in two dimensions.

Journal of Computational Physics, 86:414–439.

Rosner, R., Calder, A., Dursi, J., Fryxell, B., Lamb, D., Niemeyer, J., Olson, K., Ricker, P.,

Timmes, F., Truran, J., Tueo, H., Young, Y.-N., Zingale, M., Lusk, E., and Stevens, R.

(2000). Flash code: studying astrophysical thermonuclear flashes. Computing in Science

and Engineering, 2(2):33–41.

340

Ruge, J. W. and Stüben, K. (1987). Algebraic multigrid. In McCormick, S. F., editor, SIAM

Frontiers on Applied Mathematics, Volume 3, Multigrid Methods, pages 73–130. SIAM.

Russo, G., Strain, J., and Vetoio, V. (1994). Fast triangulated vortex methods for the 2-D euler

equations. Journal of Computational Physics, 111:291–323.

Salmon, J. K. and Warren, M. S. (1994). Skeletons from the treecode closet. Journal of Compu-

tational Physics, 111:136–155.

Seidel, J. (1991). A simple and fast incremental randomized algorithm for computing trapezoidal

decompositions and for triangulating polygones. Computational Geometry: Theory and

Applications, 1:51–64.

Shewchuk, J. (1994). An introduction to the conjugate gradient method without the agonizing

pain. http://www.cs.cmu.edu/ quake-papers/painless-conjugate-gradient.pdf.

Siegel, A. and Cole, R. (1999). An Inside Guide to Algorithms: Their Application, Design and

Analysis. Not Yet Published.

Sloan, I. (1992). Error analysis of boundary integral methods. Acta Numerica, pages 287–339.

Strain, J. (1997). Fast adaptive 2D vortex methods. Journal of Computational Physics, 132:108–

122.

Strain, M., Scuseria, G., and Frisch, M. (1996). Achieving linear scaling for the electronic

quantum Coulomb problem. Science, 271:51–53.

Strang, G. (1988). Linear Algebra and Its Applications. Harcourt Brace Jovanovich, 3rd edition.

Sundar, H., Sampath, R., and Biros, G. (2008). Bottom-up construction and 2:1 balance refine-

ment of linear octrees in parallel. SIAM Journal on Scientific Computing, 30:2675–2708.

341

Swartztrauber, P. (1974). A direct method for the discrete solution of separable elliptic equations.

SIAM Journal on Numerical Analysis, 11:1136–1150.

Swartztrauber, P. (1982). Vectorizing the FFTs, pages 51–83. Academic Press.

Swartztrauber, P. (1984). Studies in Numerical Analysis: Fast Poisson Solvers, volume 24, pages

319–370. Mathematical Association of America.

Swartztrauber, P. and Sweet, R. (1979). Algorithm 541: Efficient FORTRAN subprograms

for the solution of separable elliptic partial differential equations. ACM Transactions on

Mathematical Software, 5(3):352–364.

Swartztrauber, P. and Sweet, R. (1996). Handbook of Fluid Dynamics and Fluid Machinery:

The Fourier and Cyclic Reduction Methods for Solving Poisson’s Equation. John Wiley

and Sons.

Tor, S. and Middleditch, A. (1984). Convex decomposition of simple polygons. ACM Transac-

tions on Graphics, 3:244–265.

Tornberg, A.-. and Greengard, L. (2008). A fast multipole method for the three-dimensional

Stokes equations. Journal of Computational Physics, 227(3):1613–1619.

Trefethen, L. and Bau, D. (1997). Numerical Linear Algebra. SIAM.

Wang, H., Lei, T., Li, J., Huang, J., and Yao, Z. (2007). A parallel fast multipole accelerated

integral equation scheme for the 3d stokes equations. Journal of Numerical Methods in

Engineering, 70:812–839.

Weir, A. (1973). Lebesgue Integration and Measure. Cambridge University Press.

342

Wendland, W. (1985). On some Mathematical Aspects of Boundary Element Methods for Elliptic

Problems: In The Mathematics of Finite Elements and Applications, V, pages 193–227.

Academic Press, London.

White, C., Johnson, B., Gill, P., and Head-Gordon, M. (1994). The continuous fast multipole

method. Chemical Physics Letters, 230:8–16.

Y. Fu, G. R. (2000). Fast solution method for three-dimensional Stokesian many-particle prob-

lems. Communications in Numerical Methods in Engineering, 16(2):145–149.

Ying, L. (2004). An Efficient and High-Order Accurate Boundary Integral Solver for the Stokes

Equations in Three Dimensional Complex Geometries. PhD thesis, New York University.

Ying, L., Biros, G., and Zorin, D. (2004a). A fast solver for the Stokes equations with distributed

forces in complex geometries. Journal of Computational Physics, 194(1):317–348.

Ying, L., Biros, G., and Zorin, D. (2004b). A kernel-independent adaptive fast multipole method

in two and three dimensions. Journal of Computational Physics, 196(2):596–626.

Ying, L., Biros, G., and Zorin, D. (2006). A high-order boundary integral equation solver for

elliptic pdes in smooth domains. Journal of Computational Physics, 219(1):247–275.

Ying, L., Biros, G., Zorin, D., and Langston, M. (2003). A new parallel kernel-independent fast

multipole method. In SC 2003 Conference CD, Phoenix, AZ. IEEE/ACM SIGARCH.

Zorin, D., Schröder, P., DeRose, A., Kobbelt, L., Levin, A., and Sweldens, W.

(2000). Subdivision for modeling and animation, siggraph 2000 course notes.

http://www.cs.nyu.edu/ dzorin/sig00course/.

343

