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Abstract—We present the sparse multidimensional FFT
(sMFFT) for positive real vectors with application to image
processing. Our algorithm works in any fixed dimension, requires
an (almost)-optimal number of samples (O

(
R log

(
N
R

))
) and runs

in O
(
R log

(
N
R

))
complexity (to first order) for N unknowns and

R nonzeros. It is stable to noise and exhibits an exponentially
small probability of failure. Numerical results show sMFFT’s
large quantitative and qualitative strengths as compared to `1-
minimization for Compressive Sensing as well as advantages in
the context of image processing and change detection.

I. INTRODUCTION

Since its popularization in the 1960s [1], the Fast Fourier
Transform (FFT) algorithm has played a crucial role in mul-
tiple areas of computational mathematics and has rendered
possible great achievements in scientific computing [2], signal
processing [3] and computer science [4] by reducing the com-
putational cost of computing the Discrete Fourier Transform
(DFT) of an N -vector from O(N2) to O(N log(N)).

When the vector to be recovered is sparse, it is possible
to significantly improve on this cost [5]–[7]. That is, if f
is a N × 1 vector corresponding to the DFT of a noisy
N × 1 vector f̂ containing at most R nonzero elements, it
is possible to recover f̂ using a number of samples much
smaller than the traditional “Nyquist rate” (� O(N)), and in
computational complexity much lower than that of the FFT
(� O(N log(N))). These schemes are generally referred to
as “sparse Fast Fourier Transform” (sFFT) algorithms and
fall into two main categories: deterministic (e.g., [7]) or
randomized (e.g., [5]) algorithms. Of the two, randomized
algorithms have had the most success in practice. Sparse FFT
algorithms can further be split into more categories: 1D versus
multidimensional (d), and exact versus noisy measurements.
Also, among the fastest known sFFT algorithms, the probabil-
ity of failure p of randomized algorithms decays slowly with
N [5] and or a priori knowledge about the support is required
(e.g., contained within a cyclic interval [6], [7]). Further, many
require the unknowns N to be a power of two [6], [8], only
work in one or two dimensions [6], [8] or do not scale well
with ambient dimension d [5], [9].

The patent-pending sparse Multidimensional Fast Fourier
Transform (sMFFT)1 algorithm we have developed provably
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achieves the best known sample and computational complex-
ities while optimizing over key features as detailed here:

• Requires O
(
R
√

log(R) log
(
N
R

))
samples and

O
(
R log3/2(R) log

(
N
R

))
computational complexity;

• Cost scales linearly with dimension d;
• Exponentially small probability of failure;
• Stable to noise;
• Works for any positive integer N ;
• Works for positive real vectors only.

In this sense, our algorithm matches the optimal sampling
complexity [10] (within a log(log(N))−1 factor), and the
best time complexity achieved so far [6], [7]. Additionally,
the sMFFT is the first multidimensional sFFT that scales
linearly with dimension. Indeed, most previous endeavors were
targeted at the 1D sparse FFT, whereas the only currently-
existing multidimensional versions [5], [9] have a cost that
scales at least exponentially with dimension. Finally, our algo-
rithm does share with [6] the characteristic of being designed
for real positive vectors only, but for many applications of
interest, e.g. radar imaging [11], this is a valid hypothesis.

Below, we describe the ideas behind sparse FFTs in Sec-
tion II, followed by key details of of our sMFFT algorithm
in Section III. Numerical results are shown in Section V,
highlighting the strengths of our approach over standard FFTs
as well as Compressive Sensing [12].

II. DESCRIPTION OF THE SPARSE FFT PROBLEM

In Table I, we summarize all quantities of interest. We

Symbol Description
f(·) Periodic, bandlimited function of interest.
f̂ Vector containing Fourier coefficients of f(·).
S Set containing indices of nonzero elements of f̂ , i.e., support
N Total number of unknowns
R Upper bound on cardinality of the support S of f̂
d Ambient dimension
p Probability of failure of randomized algorithm
C Algorithmic constant

TABLE I
SUMMARY OF IMPORTANT QUANTITIES

begin by describing the 1D scheme. See Section IV for the
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multidimensional version. For some finite 0 < N ∈ N and
vector {f̂j}N−1j=0 ≥ 0, assume f(x) takes the form

f(x) =
N−1∑
j=0

e−2πi x j f̂j , (1)

Further, assume f̂ has sparsity level to 0 < R < N ; that is,
the support S :=

{
n ∈ {0, 1, ..., N − 1} : |f̂n| 6= 0

}
of f̂ has

cardinality 0 ≤ #S ≤ R < N < ∞, where the positivity
requirement dictates f̂j > 0 if j ∈ S and 0 otherwise. Finally,
The size-N Discrete Fourier Transform (DFT),

fn;N =
[
FN f̂

]
n
=

1

N

N−1∑
j=0

e−2πi
n j
N f̂j , n = 0, 1, ..., N − 1,

(2)
with inverse Fourier transform F∗. We are particularly in-
terested in the case where R � N . Consider some vector f̂
satisfying the positivity requirement with samples of a “clean”
signal plus some additive noise. The sparse FFT problem then
involves computing an approximation to f̂ from the knowledge
of O

(
R log

(
N
R

))
samples,

fn;N = fnoiselessn;N + η νn;N =
N−1∑
j=0

e−2πi
nj
N f̂j + η νn;N

and in O
(
R log

(
N
R

))
computational complexity, where 0 <

η < 1 is some small noise parameter. It is further assumed
that there is access to a decomposition of N = K

∏P
i=1 ρi,

where 2 ≤ ρi ≤ ρ, K = O(ρR) and P = O
(
log
(
N
K

))
.

We have developed the fastest available way to compute a
multidimensional DFT of a bandlimited and periodic function
f(x) satisfying Eq.(1) with positivity; we begin by outlining
the steps for the one-dimensional case and then show how to
extend to arbitrarily large dimensions.

III. OUR SPARSE FFT IN ONE DIMENSION

The sMFFT approach to computing the one-dimensional
DFT of a bandlimited and periodic sparse function f(x)
involves two key algorithmic steps: in the first step (Section
III-A-III-B), the support S of the vector f̂ is recovered, and
in the second step (Section III-C), the nonzero values of f̂
are computed using the knowledge of the support. For the
noiseless case, pseudo-code is provided in Algorithms 1-4. For
proofs of robustness and stability to noise, we refer to [13].

Algorithm 1 Output: f̂ ,S = 1DSFFT(R,N, p)

1: Let µ, ∆ and η be estimates for minj∈S |f̂j |, ||f̂ ||∞µ and the noise√
N η||ν||2 respectively.

2: (In the noiseless case, let η be the desired level of accuracy)
3: S ← FIND SUPPORT(R,N, p, µ,∆)
4: f̂ ← COMPUTE VALUES(S, R,N, p, µ,∆, η)
5: Output: f̂ ,S.

A. Finding the support

Using Figure 1 as a high-level example, the support-finding
scheme, presented in Algorithm 2, makes use of three ma-
jor ingredients: 1)sub-sampling, 2)shuffling, and 3)low-pass

filtering. Sub-sampling reduces the size of the problem to a
manageable level. For descriptive purposes, let k,N,Mk ∈ N,
0 < α < 1 and Sk,Wk,Mk ⊂ {0, 1, ..., N − 1}. Then,

• Aliased support Sk at step k corresponds to indices of
elements of the true support S modulo Mk.

• Working support Wk at step k corresponds to the set
{0, 1, ...,Mk − 1}.

• Candidate support Mk at step k is any set satisfying
Sk ⊂Mk ⊂ Wk of size O(R).

Fig. 1. Computing the support S: In Line 0), we initialize elements of
S, corresponding to black dots in the grid {0, 1, ..., N − 1}. In Line
1), elements of the candidate support M1 and aliased support S1 are
identified, represented by thin and thick tickmarks, respectively. Note that
S1 ⊂ M1 ⊂ {0, 1, ...,M1 − 1}. In Line 2), elements of the candidate
supportM2, represented by thin tickmarks, are obtained through de-aliasing
of S1. Aliased support S2 is represented by thick tickmarks. Note that
S2 ⊂ M2 ⊂ {0, 1, ...,M2 − 1}, and M2 = cM1. In Line 3), we finalize
the process the working is equal to {0, 1, ..., N − 1} and N = αM2.

At step k = 0 only the fact that S ⊂ {0, 1, ..., N − 1}
is known (e.g., Line 0) in Figure 1). At step k = 1, we let
M1 = N∏P

i=2 ρi
= ρ1K = O(R

√
log(R)) and compute the

samples,

fn1;M1
=

M1−1∑
l=0

e
−2πi

n1 l
M1

 ∑
j:jmodM1=l

f̂j

 =

M1−1∑
l=0

e
−2πi

n1 l
M1 f̂

(1)
j

for n1 ∈M1 := {0, 1, ...,M1−1}, the candidate support. The
samples correspond to a DFT of size M1 of the vector f̂ (1)

with aliased entries of the original f̂ . These can be computed
through the FFT in order O(M1 log(M1)) = O(R log

3
2 (R)).

The aliased support S1 is quickly identified from f̂ (1) since
the latter is positive if and only if the corresponding aliased
lattice contains an element of S.

In Line 1), S1 and M1 are identified, and W1 =M1. Pro-
ceeding to step k = 2 in Line 2), from S1,M2 is constructed.
Here however, the cost of recovering S2 in the previous way
is higher since computing f̂ (2) involves performing an FFT of
size M2. Additional steps, involving a shuffling and filtering
of the samples followed by an FFT of size O(R

√
log(R)), are

required to bring the cost of identifying S2 from M2 down;
these steps are described in Section III-B.

At any step k, Sk can be recovered from Mk using
O(R

√
log(R)) samples and O(R log

3
2 (R)) computations.

Following the rapid recovery of S2, we iterate until Sk = S,
i.e., O

(
log
(
N
R

))
times. This implies a cost of O

(
R log

(
N
R

))
measurements and O

(
R log

(
N
R

))
computational complexity

(to first order) as fully proved in [13].
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Algorithm 2 Output: SL = FIND SUPPORT(R, Ñ, p, µ,∆)

1: Pick 2 ≤ ρ ∈ R and 0 < δ � 1.

2: Let α = 1
ρ

, K =
max{8, 2

α
}

π
R

√
log
(

2R∆
δ

)
log
(

2∆
δ

)
and choose

N = K
∏P
i=1 ρi ≥ Ñ where 2 ≤ ρi ≤ ρ ∀ i

3: Let M1 = K and M1 := {0, 1, ...,M1 − 1}.
4: for k from 1 to P do
5: Sk ← FIND ALIASED SUPPORT(Mk,Mk,K, α, p, δ, µ,∆)

6: Mk+1 := ∪ρk−1
m=0 (Sk +mMk).

7: Mk+1 := ρkMk

8: α← 1
ρi

9: end for
10: Output: SP .

B. Rapid recovery of Sk from knowledge of Mk

Given a candidate support Mk at step k, Algorithm 3
allows for rapidly recovering the aliased support Sk in four
major steps: 1)Permute samples randomly, 2) Apply a diagonal
Gaussian filter, 3) Compute a small FFT and 4) Identify aliased
support.

Algorithm 3 FIND ALIASED SUPPORT(Mk,Mk,K, α, p, δ, µ,∆)

1: Let σ =
α
Mk
2R√

log( 2R∆
δ )

and L = logα(p).

2: Let gm =
√
πσ
Mk

∑
h∈Z e

−π2σ2
(
m+hM
M

)2

, form = 0, 1, ..., Mk − 1.
3: Sk ←Mk .
4: for l from 1 to L do
5: Pick Q ∈ Z uniform randomly in {1 ≤ Q ≤Mk − 1 : Q ⊥Mk}.
6: Compute:
7: φ

(k)
j =

∑Mk−1
m=1

|mmodMk|≤K2

e2πi
jm
K gm f(mQ) modMk;Mk

,

8: for j = 0, 1, ...,K − 1 rapidly through FFT.
9: for j ∈Mk do

10: if

∣∣∣∣∣φ(k)[
(jQmodMk) K

Mk

]
Mk
K

(Q)

∣∣∣∣∣ < δ µ then

11: Remove j from Sk .
12: end if
13: end for
14: end for
15: Output: Sk .

To better understand each step, re-consider Figure 1 at step
k = 3 with Mk = 40. First, randomly shuffle Mk within
Wk by applying a permutation operator as described in [13];
for appropriately chosen random parameters, this shuffling is
equivalent to uniform shuffling in Fourier space. The result is
shown on Line B) of Figure 2. The shuffling step is followed

Fig. 2. Beginning with Sk = {1, 23, 35} Mk = {1, 3, 15, 21, 23, 35}, and
Wk = {1, 2, ..., 39}, for finding the aliased support Sk from knowledge of
Mk in Line A), indices are shuffled in value space leading to a shuffling in
frequency space in Line B) to obtain Sshuffled

k = Sk · 13 = {13, 15, 19}
and Mshuffled

k = Mk · 13 = {13, 15, 19, 33, 35, 39}. A Gaussian filter is
applied, followed by a small FFT in Line C) on a grid G. The points ofMk

for which the value of the result of the last step at their closest neighbor in
G is small are discarded leaving only the aliased support Sk .

by the application of a diagonal Gaussian filtering operator
with an equivalent convolution in frequency space. The result
is subsequently discretized to produce a small DFT of a
permuted version the original Fourier coefficients convoluted
with a Gaussian rapidly and accurately through a size-K
FFT. The result is shown on line C) of Figure 2, and this
information is sufficient to recover an aliased support from
a candidate support. Details and proofs of correctness are
presented in [13].

The permutation and multiplications step both incur a cost
of O(R), followed by an FFT of size O(K) = O(R

√
log(R))

with O(R log
3
2 (R)) cost. Finally, identifying the aliased sup-

port involves checking a simple property on each of the Mk

elements of Mk, incurring a cost O(R
√
log(R)). Repeated

O(log(p)) times for a probability (1 − p) of success implies
that extracting Sk from Mk requires O(log(p)R) samples
with O(log(p)R) complexity (to first order) as claimed.

C. Recovering values from knowledge of the support

Assume a set S of size O(R) containing the support has
been recovered. We compute the values of the nonzero Fourier
coefficients of f̂ in Eq. (1) rapidly using this information. For

this purpose, sample the f(x) at
{
ntmodP (t)

P (t)

}P (t)−1,T

nt=0,t=1
(see

Algorithm 4 for choice of P (t) and T ). It can be shown that
this leads to a system of the form,

[FB] f̂ =

 F (1) ... 0
... ... ...
0 ... F (T )

  B(1)

...
B(T )

 f̂ = f†. (3)

where the first matrix is a T -block diagonal matrix hav-
ing diagonal entries corresponding to DFT matrix of size
O(R), and B is a sparse matrix with O(R) nonzero entries.
In [13], we prove that FB as constructed is invertible in order
O(R log(N)) and well-conditioned.

Algorithm 4 COMPUTE VALUES(S, R,N, p, µ,∆, η)

1: Let T = 4, Z = dlog 1
2

(η)e and L = dlog 1
2

(p)e.
2: for t from 1 to L do
3: Pick {P (t)}Tt=1 i.i.d. uniform r.v. chosen among the set containing

the smallest 4R logR(N) prime numbers greater than R.

4: Sample
{
fnmodP (t);P (t)

}P (t)−1

n=0
, t = 1, ..., T

5: Compute f̂0 ← (FB)∗f0 (Eq.(3)).
6: if ||(B∗B) f̂0||2 < 1

2
then

7: f̂ ←
∑Z
n=0(I −B∗B)nf̂0

8: Output: f̂ .
9: Exit.

10: end if
11: end for

IV. THE MULTI-DIMENSIONAL SPARSE FFT

By nature, whenever dealing with the multidimensional
DFT/FFT, it must be assumed that the function of interest is
both periodic and bandlimited with fundamental period [0, 1)
in each dimension, i.e., that it has an expansion of the form

f(x) =
∑

j∈([0,M)∩Z)d
e−2πi x·j f̂j (4)
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for some finite M ∈ N and j ∈ Zd. Computing its Fourier
coefficients is traditionally achieved through a tensor product
of quadratures [14]::

f̂(j1,j2,...,jd) =
d∑
k=1

M−1∑
nk=0

(
d∏
k=1

e2πi
jknk
M

)
f(n1,n2,...,nd).

In [13], however, we prove that if f : [0, 1)d → C is
bandlimited and periodic and has form (4), then∫

[0,1]d
e−2πi j·x f(x) dx =

1

N

N−1∑
n=0

e−2πi j·xn f(xn)

for all j ∈ {0, 1, ...,M − 1}, where, xn = ngmodN
N , g =

(1,M,M2, ...,Md−1) and N = Md. The summation can be
written in two different ways due to periodicity, namely,

1

N

N−1∑
n=0

e−2πi k·
ngmodN

N f

(
ngmodN

N

)
,

or
1

N

∑
n

e−2πi k·
ng
N f

(ng
N

)
The former represents a quadrature rule with points xn =
ngmodN

N distributed (more-or-less uniformly) in [0, 1)d as
depicted in Figure 3 (Left) while the latter represents an
equivalent quadrature where the points x̃n = ng

N now lie on a
line embedded in Rd as in Figure 3 (Right).

Fig. 3. Geometric interpretation of rank-1 lattice in 2D. The thick black
box represents fundamental periodic domain. Grey dots represent rank-1
discretization points, thin lattice points represent quadrature point used with a
tensor product, and the 2D grid represents standard/tensor product discretiza-
tion points. Left: the rank-1 quadrature interpreted as a 2D discretization over
the fundamental periodic region. Right: the rank-1 quadrature interpreted as
a uniform discretization over a line in R2.

We can thus express any d-dimensional DFT as a one-
dimensional DFT by choosing the appropriate sample points
and re-ordering the Fourier coefficients through a simple
isomorphism. Further details are available in [13].

V. NUMERICAL RESULTS

In this section, we present numerical results demonstrating
the validity and performance of our sMFFT scheme. The
results can be grouped in three categories: 1) a synthetic
2D example using a traditional “Phantom,” with comparison
against Compressed Sensing (CS) (`1-minimization), 2) a 3D
synthetic example and 3) 2D real-data experiments in the
context of change detection.

A. Comparison with 2D Compressive Sensing

Our first set of experiments involves 2D images of a
Phantom at different resolution ranging from 162 pixels to
10242 pixels as shown in Figure 4 (left). Each image was
obtained through 2D linear interpolation of a high-resolution
image and has a sparsity level of s = #nonzeros

#unknowns = R
N ≈ 8%.

For each resolution level we proceed as follows: first, we
computed the Fourier transform of the image at appropriately-
chosen points (see [12] for CS sampling). We then added
Gaussian noise to every sample in order to obtain an Signal-
to-Noise Ratio (SNR) of SNR ≈ 20dB. Finally, we proceed
to the reconstruction of the image through the sMFFT, and CS
by solving the following `1-minimization problem,

minimize||x||1
subject to||SFx− b||2 ≤ ε,

where F is the Discrete Fourier Transform (DFT) matrix, S
is a selector matrix which selects only the rows correspond-
ing to the location the random samples, and b is a vector
containing the values of the Fourier transform of the image at
random locations. All computations were performed on a small
cluster possessing 4x Intelr Xeonr Processor (E7-4860 v2)
and 256GB of RAM using MATLAB, and the optimization
problem was solved using the cvx package [15], [16]. We
measured both the time taken and the accuracy of each method
in every case. The results are shown in Figure 4 and 5.

Fig. 4. 2D Phantom synthetic experiments. Left: original image. Right:
reconstructed image (sMFFT). From top to bottom: 642 resolution, 2562

resolution and 10242 resolution. Each reconstructions is in good agreement
with the original and the relative error lies within the noise level.

We observe both techniques recover the original image with
relative error on the order of noise as expected. However, the
sMFFT is orders of magnitude faster than `1-minimization,
which becomes more pronounced as the total number of
unknowns (N ) increases. Although CS requires a number of
samples much smaller than traditional techniques based on the
FFT, the cost of reconstruction remains prohibitively expensive
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due to two major issues [17]: 1) `1-solvers often exhibit
sublinear convergence and 2) each iteration of an `1 solver
requires at least one matrix-vector product at a cost of at least
O(N). The dependency of the sMFFT on the total number of
unknowns, however, is (provably) on the order of O(log(N)),
which is significant especially in higher dimensions.
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R
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i v

e
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(e
rr
)

Noise level
`1-min; (CS)

sMFFT

Fig. 5. 2D Phantom synthetic experiments. Comparison of performance
between sMFFT and Compressed Sensing (`1-minimization). Top: reconstruc-
tion wall time for sMFFT (x) and CS (o) versus number of unknowns. Bottom:
relative error of reconstruction for sMFFT (x) and CS (o) versus resolution
(M ) for a noise level of order 10−1. Both techniques use roughly the same
amount of measurements and recover the original image with a relative on
the order of the noise level . However, sMFFT is orders of magnitude faster
than `1-minimization.

B. 3D synthetic data

To demonstrate performance of our method in a difficult
case, we chose a problem mimicking an example of radar
and/or Computed Tomography (CT) imaging problem in 3D
[11]. For this purpose, we generated an image from the
extrusion of Reservoir Labs’ logo (shown in Figure 6, left),
embedded in a 3D region. The latter region is meshed using
a uniform 10243 grid with N = 1.07 · 109 unknowns. The
scale of the extrusion is chosen such that the sparsity level
is ≈ 0.002 with R = 1.83 · 104 nonzero elements). We
first computed 9.83 · 106 ∼ O(R log(N)) samples at the
appropriate locations dictated by the sMFFT, followed by the
addition of Gaussian noise (SNR = 5dB), and a reconstruction
through the sMFFT. The parameters used are summarized in
Table II with results shown in Figure 6. The original and
reconstruction are in good agreement qualitatively and quan-
titatively. Furthermore, the scheme requires very little time

TABLE II
PARAMETERS USED FOR THE 3D SYNTHETIC EXPERIMENT

# unknowns/pixels (N ) 1.07 · 109

# nonzeros (R) 1.83 · 104

# samples 9.83 · 106

Reconstruction time (s) 1.05
Relative error 1.04 · 10−1

SNR (dB) 5.23

to reconstruct the solution due to the sMFFT’s advantageous
scaling.

Fig. 6. Left: Original image. Right: Reconstructed image (sMFFT). From
top to bottom: full-scale image, front view (zoomed) and side view (zoomed).
Signal-to-Noise ratio: SNR = 5dB, total number of unknowns N = 1.0737·
109, total number of nonzeros: R = 1.8346·104, number of samples: 9.8304·
106, reconstruction time: 1.0511s.

C. Change detection on 2D real data

For the third numerical experiment, the sMFFT is applied to
Change Detection (CD) problems. Figures 7 and 8 show results
from two different experiments. All images were obtain from
the CDW-2014 dataset [18]. In each case, two 5122 pixeled
greyscale images of the same scene are considered. The first
scene contains the background, whereas the second scene
contains the addition of a sparse perturbation, i.e., a person
walking in front of the camera. The (forward) sMFFT of
each image is computed and the two are subtracted. Since all
operations are linear, this is equivalent to the computation of
the sMFFT of the change itself. Finally, the (inverse) sMFFT

TABLE III
PARAMETERS USED IN CD EXPERIMENTS

Case Type # pixels (N ) # nonzeros (R) time (s)
1 Optical 2.62144 · 105 1.0894 · 104 0.5292
2 Infrared (IR) 2.62144 · 105 1.886 · 104 1.1236

of the difference is computed rapidly to obtain the change.
Relevant parameters are summarized in Table III, and results
are shown in Figures 7 and 8.
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Fig. 7. Case 1. Optical wavelength change detection experiment. Top left:
Original background image. Top right: Original background image with per-
turbation (change). Bottom left: difference between original images. Bottom
right: reconstruction of change through sMFFT. Each original images contain
a total of 512 × 512 = 2.62144 · 105 pixels. The perturbation occupies
1.09 · 104 pixels. The reconstruction time is: 0.53s.

Fig. 8. Case 2. IR wavelength change detection experiment. Top left: Original
background image. Top right: Original background image with perturbation
(change). Bottom left: difference between original images. Bottom right:
reconstruction of change through sMFFT. Each original images contain a
total of 512× 512 = 2.62 · 105 pixels. The perturbation occupies 1.89 · 104

pixels. The reconstruction time is: 1.12s. The change and its reconstruction
are in good agreement despite noise.

Qualitatively, the sMFFT produces very good results with
low computational cost compared to existing techniques based
on CS (e.g. [19]). These results suggest that the sMFFT
possesses great potential for sparse image processing, and in
particular, large-scale change detection. This can be accom-
plished through the use of a one-pixel or a “few-pixels” camera
for instance. Finally, although this example was conducted in
2D, the sMFFT linear scaling in dimension would also allow
the treatment of the temporal case (video change detection) as
well as the coherent case (Coherent Change Detection; CCD).

VI. CONCLUSION

We have introduced a highly-efficient and stable multi-
dimensional Fourier transform for real and positive sparse

vectors. We have shown performance through various synthetic
and real-data examples. The characteristics of the sMFFT are
such that previously intractable problems can enter into the
realm of the practical.

We are currently extending our algorithm to general (fully
complex) sparse vectors. We also plan to treat different types
of transforms such as wavelets and curvelets with the expecta-
tion of reducing the computational burden of various machine
learning and image recognition algorithms [20].
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