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1 Introduction

Adaptive fluid solvers have been built in a grid-based fashion
[Losasso et al. 2004], for which desired areas of refinement must be
known beforehand. This is not always possible, and further, these
methods can be slow for turbulent flows where small time-stepping
is required. Vortex methods can address this issue such as in [Selle
et al. 2005]. Here, vorticity is transported by particles, causing the
non-linear term in the Navier-Stokes equations to be handled more
easily than in grid-based methods and allowing for better modeling
of phenomena such as smoke.

Vortex methods pose additional difficulties, however, in that par-
ticles can become clustered, and resolution can become lost in areas
of interest. [Selle et al. 2005] address this through vorticity con-
finement, but this may lead to unnatural or physically inconsistent
flows. To address the problem of particle dissipation without intro-
ducing an increase in vorticity field strength, we introduce a method
which maintains local circulation about a closed curve.

2 Our Technique

Free-Space Particle Simulation. In order to solve the Navier-
stokes equations in vortex form, we first solve the vortex Euler
equations in free space, discretely represented as:

uω(xj , tk) =
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)
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where K is the Biot-Savart kernel. Here, h represents the initial
distance between each particle, and at the kth timestep, ωk

j = ω0
j

in 2D. Equation 1 is computed quickly using the Barnes-Hut adap-
tive quadtree algorithm with smoothing, and particle positions are
updated through a basic advection step.

Particle Adaptivity through Circulation. To keep particles
from dissipating or clustering, we use a non-adaptive quadtree of an
appropriate resolution on top of our existing quadtree structure to
locate empty or near-empty cells. New particles are introduced, and
a new particle’s vorticity is interpolated from near neighbors. Sim-
ply adding these particles would increase the vorticity field strength,
causing undesired velocities. Our solution is to associate an h value
with each particle and maintain local circulation, hence maintaining
general field strength.

Circulation about a closed curve remains constant over time for
isentropic flows absent external forces. We define local circulation
for each particle as Γi = ωih

2
i such that for a new particle, xnew,

we maintain local circulation of a nearby particle cluster by adapt-
ing all nearby h values. We seek ĥi values such that for M nearby
particles
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, and each parti-

cle’s local velocity (the velocity derived from the influence of close
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neighbors) remains unchanged:

ulocal(xi) = K(xi − xnew)h2
new +

M∑
i 6=j

k(xi − xj)ωj ĥi
2

(2)

We require that at least 20 particles can be found nearby and overde-
termine the linear system in equation 2 by a factor of 3-4 and solve
using an SVD-based solver. If a particle’s h value gets too large or
there are too many particles in a single location, we delete one or
more particles and distribute the influence to nearby particles using
a similar solver. Figure 1 shows the general approach.

Figure 1: A non-adaptive quadtree locates empty cells for particle
insertion while the adaptive tree builds an area of influence, from
which particles are used for interpolation, their h values affected by
the new particle (seen in red). Deletion works similarly.

Adding Viscosity. To add viscous diffusion for the Navier-
Stokes equations, we use random walks based on independent and
random Gaussianly distributed values to update particle positions.

Enforcing Boundary Conditions. At the boundary, u ·n = 0
and u · t = 0 for normal and tangential vectors, respectively. For
the former (no-flow), a potential flow, up is constructed using a
boundary integral formulation as in [Chorin 1973] such that u =
uω+up. The latter (no-slip) is enforced by introducing particles on
each segment of the boundary of length l with vorticity (uω + up) ·
tl at appropriate timesteps.

3 Conclusion

We have introduced a method in 2D for a priori adaptivity in a
particle-based fluid solver using conservation of circulation. Fur-
ther, our approach preserves the computational advantages vortex
methods provide over traditional grid-based solvers. Moving to-
wards 3D, several issues are being addressed including vorticity
stretching and particle generation on tangential boundary planes.

Figures 2 to 5 refer to the Perlman test case ω(r) =(
max

(
0, 1 − r2

))10 on the domain [−0.5, 0.5]2, for which the so-
lution is known. All of the following simulations are also available
in a supplemental video. Further images below show results for this
method.



Figure 2: 16,000 particles are advected
using the initial Perlman vorticity values
through 100 time steps with no particle ad-
dition, blended together using their h val-
ues as their radii. Color intensity is based
on vorticity strength. By the end, “holes”
can be seen between particles.

Figure 3: Again for the Perlman test case,
we begin adding particles, colored blue to
show contrast, maintaining local circula-
tion among particles nearby. These parti-
cles fill the holes from figure 2 as desired.

Figure 4: Instead of using blue particles
to fill in holes, we interpolate the vorticity
and colors of the new particles. By the end
of this simulation, the total field strength
and circulation has not increased signifi-
cantly while the particles have increased
from 16,000 to 17,500.

Figure 8: In order to satisfy the no-slip boundary condition, u · t = 0 on ∂D, we generate new particles as described. The image on the left
is from a real fluid simulation from G.K. Batchelor’s An Introduction to Fluid Dynamics, Cambridge 1967, used for visual comparison to our
simulation. In both cases, we see the vortex “roll-up” effect.



Figure 5: Again with the Perlman test case, we look at how a texture
is deformed by the vorticity. Particles are added a priori as deemed
appropriate by the system. Texture values are interpolated along
with vorticity to show consistency of the interpolation scheme. This
simulation begins with 64,000 particles and ends with 68,000.

Figure 6: For particles with an induced velocity U∞ = 1.0 and no
vorticity, we use our boundary integral solver to show that we can
induce a potential flow up to enforce no-flow boundary conditions
u · n = 0 on ∂D as described.

Figure 7: A comparison of adaptive vortex simulations, enforcing
no-slip and no-flow boundary conditions to a fluid simulation from
G.K. Batchelor’s An Introduction to Fluid Dynamics, Cambridge
1967.

Figure 9: Simulations for odd-shaped geometries can be accom-
plished for properly discretized boundaries. We use gray ghost par-
ticles to look for areas of desired particle insertion and deletion even
though these particles carry no vorticity. We note that as particles
come in from the left on the sideways ‘U’ shape in the first image,
ghost particles do not penetrate the boundary, and new boundary
particles successfully push their way out. The simulation on the
left is shown in greater detail in the supplemental video.

Figure 10: Initial results in three dimensions for simulating the po-
tential flow. In three dimensions, we are working to accurately
model vorticity stretching and no-slip boundary conditions.
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